
## Kirill V Zaitsev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8668361/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Stabilized Germylenes Based on Diethylenetriamines and Related Diamines: Synthesis, Structures, and<br>Chemical Properties. European Journal of Inorganic Chemistry, 2012, 2012, 3712-3724.                                                                                  | 1.0 | 43        |
| 2  | Synthesis of model humic substances: a mechanistic study using controllable H/D exchange and Fourier transform ion cyclotron resonance mass spectrometry. Analyst, The, 2015, 140, 4708-4719.                                                                                | 1.7 | 43        |
| 3  | Enumeration of carboxyl groups carried on individual components of humic systems using<br>deuteromethylation and Fourier transform mass spectrometry. Analytical and Bioanalytical<br>Chemistry, 2017, 409, 2477-2488.                                                       | 1.9 | 38        |
| 4  | Controlled ringâ€opening homo†and copolymerization of É›â€caprolactone and d,l â€lactide by<br>iminophenolate aluminum complexes: An efficient approach toward wellâ€defined macromonomers.<br>Journal of Polymer Science Part A, 2014, 52, 1237-1250.                       | 2.5 | 37        |
| 5  | "Donor–Acceptor―Oligogermanes: Synthesis, Structure, and Electronic Properties. Organometallics,<br>2013, 32, 6500-6510.                                                                                                                                                     | 1.1 | 36        |
| 6  | Palladium complexes with stabilized germylene and stannylene ligands. Dalton Transactions, 2013, 42,<br>7901.                                                                                                                                                                | 1.6 | 34        |
| 7  | Reaction of germanes and digermanes with triflic acid: The route to novel organooligogermanes.<br>Journal of Organometallic Chemistry, 2012, 700, 207-213.                                                                                                                   | 0.8 | 33        |
| 8  | Optical Properties of Soil Dissolved Organic Matter Are Related to Acidic Functions of Its<br>Components as Revealed by Fractionation, Selective Deuteromethylation, and Ultrahigh Resolution<br>Mass Spectrometry. Environmental Science & Technology, 2020, 54, 2667-2677. | 4.6 | 33        |
| 9  | Titanium complexes of dialkanolamine ligands as initiators for living ringâ€opening polymerization of<br>εâ€caprolactone. Journal of Polymer Science Part A, 2010, 48, 1230-1240.                                                                                            | 2.5 | 31        |
| 10 | Novel germylenes and stannylenes based on pyridine-containing dialcohol ligands. Journal of<br>Organometallic Chemistry, 2009, 694, 3828-3832.                                                                                                                               | 0.8 | 30        |
| 11 | Titanium complexes based on chiral enantiopure dialkanolamines: synthesis, structures and catalytic activity. New Journal of Chemistry, 2008, 32, 1415.                                                                                                                      | 1.4 | 29        |
| 12 | Aluminum complexes based on pyridine substituted alcohols: synthesis, structure, and catalytic application in ROP. Dalton Transactions, 2015, 44, 11963-11976.                                                                                                               | 1.6 | 28        |
| 13 | Compounds of Group 14 Elements with an Element–Element (E = Si, Ge, Sn) Bond: Effect of the Nature<br>of the Element Atom. Organometallics, 2015, 34, 2765-2774.                                                                                                             | 1.1 | 28        |
| 14 | Titanium Complexes of Dialkanolamine Ligands: Synthesis and Structure. European Journal of<br>Inorganic Chemistry, 2006, 2006, 1987-1999.                                                                                                                                    | 1.0 | 27        |
| 15 | Stabilized germylenes based on dialkanolamines: Synthesis, structure, chemical properties. Journal of<br>Organometallic Chemistry, 2012, 706-707, 66-83.                                                                                                                     | 0.8 | 27        |
| 16 | Oligogermanes Containing Only Electron-Withdrawing Substituents: Synthesis and Properties.<br>Organometallics, 2017, 36, 298-309.                                                                                                                                            | 1.1 | 26        |
| 17 | Extending the family of stable heavier carbenes: New tetrylenes based on N,N,O-ligands. Inorganica<br>Chimica Acta, 2016, 443, 91-100.                                                                                                                                       | 1.2 | 25        |
| 18 | Luminescence Enhancement by <i>p</i> ‣ubstituent Variation. European Journal of Inorganic<br>Chemistry, 2017, 2017, 107-114.                                                                                                                                                 | 1.0 | 24        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Molecular Oligogermanes and Related Compounds: Structure, Optical and Semiconductor Properties.<br>Chemistry - an Asian Journal, 2017, 12, 1240-1249.                                                                           | 1.7 | 23        |
| 20 | Biodegradation of Poly-ε-caprolactones and Poly-l-lactides by Fungi. Journal of Polymers and the Environment, 2018, 26, 4350-4359.                                                                                              | 2.4 | 23        |
| 21 | Novel Stannylenes Stabilized with Diethylenetriamido and ÂRelated Amido Ligands: Synthesis,<br>Structure, and Chemical Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639,<br>502-511.                   | 0.6 | 21        |
| 22 | New oligogermane with a five coordinate germanium atom: the preparation of 1-germylgermatrane.<br>Dalton Transactions, 2014, 43, 6605-6609.                                                                                     | 1.6 | 21        |
| 23 | Oligothienyl catenated germanes and silanes: synthesis, structure, and properties. Dalton<br>Transactions, 2018, 47, 5431-5444.                                                                                                 | 1.6 | 21        |
| 24 | Synthesis and structure of titanium alkoxides based on tetraphenyl substituted 2,6-dimethanolpyridine moiety. Inorganica Chimica Acta, 2007, 360, 2507-2512.                                                                    | 1.2 | 18        |
| 25 | Synthesis and structural characterization of low-valent group 14 metal complexes based on aminobisphenol ligands. Inorganica Chimica Acta, 2017, 461, 213-220.                                                                  | 1.2 | 18        |
| 26 | Reaction of digermanes and related Ge-Si compounds with trifluoromethanesulfonic acid: synthesis<br>of helpful building blocks for the preparation of Ge-Ge(Si)-catenated compounds. Main Group Metal<br>Chemistry, 2014, 37, . | 0.6 | 14        |
| 27 | New tetrylenes based on substituted diethylenetriamines: synthesis and use as initiators for<br>ε-caprolactone polymerization. Russian Chemical Bulletin, 2019, 68, 389-393.                                                    | 0.4 | 14        |
| 28 | Carbonyl complexes of transition metals with stabilized germylenes. Journal of Organometallic<br>Chemistry, 2013, 735, 15-25.                                                                                                   | 0.8 | 13        |
| 29 | Aluminum Complexes Based on Tridentate Amidoalkoxide NNO-Ligands: Synthesis, Structure, and<br>Properties. Journal of Organometallic Chemistry, 2018, 875, 11-23.                                                               | 0.8 | 13        |
| 30 | Synthesis of carboxylated styrene polymer for internal calibration of Fourier transform ion<br>cyclotron resonance mass-spectrometry of humic substances. European Journal of Mass<br>Spectrometry, 2017, 23, 156-161.          | 0.5 | 12        |
| 31 | Hypercoordinated Oligosilanes Based on Aminotrisphenols. ACS Omega, 2018, 3, 10317-10330.                                                                                                                                       | 1.6 | 12        |
| 32 | Donor-acceptor molecular oligogermanes: Novel properties and structural aspects. Journal of Organometallic Chemistry, 2018, 867, 228-237.                                                                                       | 0.8 | 11        |
| 33 | Chromium carbonyl complexes with aryl mono- and oligogermanes: Ability for haptotropic rearrangement. Journal of Organometallic Chemistry, 2019, 897, 217-227.                                                                  | 0.8 | 11        |
| 34 | Controlled homoand copolymerization of ε-caprolactone and d,l-lactide in the presence of TiIV complexes. Russian Chemical Bulletin, 2015, 64, 181-188.                                                                          | 0.4 | 10        |
| 35 | Synthesis, structure, and catalytic activity of new aluminum and titanium complexes based on<br>aminobisphenolate ligands containing bulky substituents. Russian Chemical Bulletin, 2016, 65,<br>1743-1749.                     | 0.4 | 10        |
| 36 | Titanium complexes based on pyridine containing dialcohols: Effect of a ligand. Inorganic Chemistry Communication, 2016, 67, 1-5.                                                                                               | 1.8 | 10        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Germylenes and stannylenes based on aminobisphenolate ligands: insertion into the C—Br bond.<br>Russian Chemical Bulletin, 2017, 66, 622-627.                                                                                 | 0.4 | 10        |
| 38 | Austalides V and W, new meroterpenoids from the fungus Aspergillus ustus and their antitumor activities. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126708.                                                        | 1.0 | 10        |
| 39 | Sterically hindered tetrylenes based on new 1,10-phenanthroline-containing diols: initiators for<br>ε-caprolactone polymerization. Russian Chemical Bulletin, 2019, 68, 380-388.                                              | 0.4 | 10        |
| 40 | Disproportionation reactions within the series of coordinated monoorganostannanes. Journal of Organometallic Chemistry, 2013, 747, 241-248.                                                                                   | 0.8 | 9         |
| 41 | Synthesis of Functional Poly(ε-caprolactone)s via Living Ring-Opening Polymerization of ε-Caprolactone<br>Using Functionalized Aluminum Alkoxides as Initiators. Macromolecular Chemistry and Physics, 2017,<br>218, 1600580. | 1.1 | 9         |
| 42 | Tetrylenes based on 1,10-phenanthroline-containing diol: the synthesis and application as initiators of<br>ε-caprolactone polymerization. Russian Chemical Bulletin, 2018, 67, 542-547.                                       | 0.4 | 9         |
| 43 | Substituted 4-(1H-1,2,3-triazol-1-yl)-tetrafluorobenzoates: Selective synthesis and structure. Journal of Fluorine Chemistry, 2016, 187, 15-23.                                                                               | 0.9 | 8         |
| 44 | Titanium (IV) complexes based on substituted 2-[(2-hydroxyethyl)]aminophenols. Journal of<br>Organometallic Chemistry, 2008, 693, 173-179.                                                                                    | 0.8 | 7         |
| 45 | Synthesis, structure, and catalytic activity of new aluminum complexes formed with sterically bulky<br>ligands. Russian Chemical Bulletin, 2014, 63, 2630-2634.                                                               | 0.4 | 7         |
| 46 | Titanium(IV) Complexes Based on TriÂdentate N,N,O Ligands - Synthesis, Structure, and Thermal<br>Decomposition. European Journal of Inorganic Chemistry, 2015, 2015, 5903-5912.                                               | 1.0 | 7         |
| 47 | Aryl Germanes as Ligands for Transition Polymetallic Complexes: Synthesis, Structure, and Properties.<br>European Journal of Inorganic Chemistry, 2019, 2019, 2750-2760.                                                      | 1.0 | 7         |
| 48 | New dialkylenetriamine zinc complexes as highly efficient ROP catalysts. Mendeleev Communications, 2020, 30, 596-598.                                                                                                         | 0.6 | 7         |
| 49 | Structures of germylenes and stannylenes with chelating ligands: a DFT study. Russian Chemical<br>Bulletin, 2009, 58, 1576-1580.                                                                                              | 0.4 | 6         |
| 50 | Syndiospecific polymerization of styrene in the presence of new titanium complexes with<br>dialkanolamines: Titanocanes and bistitanocanes. Polymer Science - Series B, 2010, 52, 136-143.                                    | 0.3 | 6         |
| 51 | Aryl Oligogermanes as Ligands for Transition Metal Complexes. European Journal of Inorganic<br>Chemistry, 2018, 2018, 4911-4924.                                                                                              | 1.0 | 6         |
| 52 | Synthesis of new titanatranes containing organic substituents in the atrane fragment. Russian<br>Chemical Bulletin, 2005, 54, 2831-2840.                                                                                      | 0.4 | 5         |
| 53 | The reaction of Al(O-i-Pr)3 with the SalenH2 ligand: An unexpected product. Polyhedron, 2014, 81, 312-315.                                                                                                                    | 1.0 | 5         |
| 54 | Insertion of germylenes into Ge–X bonds giving molecular oligogermanes: theory and practice.<br>Monatshefte Für Chemie, 2019, 150, 1773-1778.                                                                                 | 0.9 | 5         |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Monasnicotinic acid, a novel pyridine alkaloid of the fungus Aspergillus cavernicola : isolation and structure elucidation. Mendeleev Communications, 2018, 28, 55-57.                                      | 0.6 | 4         |
| 56 | Synthesis of chromium carbonyl complexes with molecular aryl polysilanes: Si Si bond rupture and formation. Inorganic Chemistry Communication, 2019, 109, 107571.                                           | 1.8 | 4         |
| 57 | 6-Benzyl-2-methyl-1,3-bis(pentafluorophenyl)-1,3,6,2-triazaalumocane. Acta Crystallographica Section E:<br>Structure Reports Online, 2012, 68, m1385-m1386.                                                 | 0.2 | 3         |
| 58 | {2,2′-[Ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}(isopropanolato)aluminium<br>dichloromethane hemisolvate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69,<br>m631-m632. | 0.2 | 3         |
| 59 | Catalytic synthesis of alkyl (S,S)-O-Lactyllactates: Efficiency in action. Catalysis Communications, 2018, 106, 36-39.                                                                                      | 1.6 | 3         |
| 60 | Di-μ-oxido-bis({2,2′-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}titanium(IV)) chloroform<br>disolvate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m626-m627.        | 0.2 | 3         |
| 61 | Diamidoamine Aluminum Complexes: Synthesis, Structure, L–Lactide and ϵâ€Caprolactone Polymerization.<br>ChemistrySelect, 2021, 6, 10243-10249.                                                              | 0.7 | 3         |
| 62 | Oligoorganogermanes: Interplay between Aryl and Trimethylsilyl Substituents. Molecules, 2022, 27, 2147.                                                                                                     | 1.7 | 3         |
| 63 | Crystal packing in the structures of diethanolamine derivatives. Acta Crystallographica Section C:<br>Crystal Structure Communications, 2009, 65, o587-o592.                                                | 0.4 | 2         |
| 64 | Germylenes derived from pyridine-containing diols: reactions with diphenylphosphoryl azide and 9,10-phenanthrenequinone*. Chemistry of Heterocyclic Compounds, 2012, 47, 1584-1589.                         | 0.6 | 2         |
| 65 | Structure of hypercoordinated monoorganodihalostannanes in solutions and in the solid state: the halogen effect. Inorganica Chimica Acta, 2015, 432, 142-148.                                               | 1.2 | 2         |
| 66 | DFT study of inter-ring haptotropic rearrangement in CpRu+ complexes of polycyclic aromatic ligands.<br>Journal of Organometallic Chemistry, 2019, 889, 9-14.                                               | 0.8 | 2         |
| 67 | Antitumor Activity of Monasnicotinic Acid Isolated from the Fungus Aspergillus cavernicola. Russian<br>Journal of Bioorganic Chemistry, 2021, 47, 307-316.                                                  | 0.3 | 2         |
| 68 | Di-μ-oxido-bis({2,2′-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}titanium(IV)) chloroform<br>disolvate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m635-m636.        | 0.2 | 2         |
| 69 | Silicon Complexes Based on SS- and SS-Coordinating Tridentate Ligands. Journal of Organometallic Chemistry, 2022, 957, 122153.                                                                              | 0.8 | 2         |
| 70 | Methylaluminum complexes based on tridentate 2,6-bis(mercaptoalkyl)pyridine SNS-ligands. Mendeleev<br>Communications, 2021, 31, 847-849.                                                                    | 0.6 | 2         |
| 71 | Formation of Azaphilone Pigments and Monasnicotinic Acid by the Fungus <i>Aspergillus cavernicola</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 7122-7129.                                    | 2.4 | 2         |
| 72 | Crystal structure of 2,2,3,3-tetramethyl-1,1,1,4,4,4-hexaphenyltetragermane. Acta Crystallographica<br>Section E: Structure Reports Online, 2014, 70, o1273-o1274.                                          | 0.2 | 1         |

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Extending the series of p-substituted tetrafluorobenzoic acids: synthesis, properties and structure.<br>Journal of Fluorine Chemistry, 2017, 197, 49-58.                                                                                                   | 0.9 | 1         |
| 74 | exo- and endo-Complexes of Fe(0) with Carbon Allotropic Modifications on the Example of Fullerene<br>С60: a Density Function Theory Study. Russian Journal of General Chemistry, 2021, 91, 828-834.                                                        | 0.3 | 1         |
| 75 | Crystal structure of a mixed-valence μ-oxide Sn <sub>12</sub> cluster. Acta Crystallographica Section<br>E: Structure Reports Online, 2014, 70, m378-m379.                                                                                                 | 0.2 | 1         |
| 76 | Crystal structure of (tert-butyldimethylsilyl)triphenylgermane, Ph3Ge-SiMe2(t-Bu). Acta<br>Crystallographica Section E: Crystallographic Communications, 2015, 71, o1015-o1016.                                                                            | 0.2 | 1         |
| 77 | Tetrylenes based on polydentate sulfur-containing ligands. Mendeleev Communications, 2021, 31, 850-852.                                                                                                                                                    | 0.6 | 1         |
| 78 | Reaction of Substituted Group 14 Element Potassium Salts with 1-(Chloromethyl)silatrane:<br>Substitution or Rearrangement?. Russian Journal of General Chemistry, 2021, 91, 2385-2390.                                                                     | 0.3 | 1         |
| 79 | Crystal structure of 2,6-bis(2-hydroxy-5-methylphenyl)-4-phenylpyridinium bromide dichloromethane<br>hemisolvate hemihydrate. Acta Crystallographica Section E: Crystallographic Communications, 2015,<br>71, o953-o954.                                   | 0.2 | 0         |
| 80 | Crystal structure of<br>4,8-di-tert-butyl-6,6-dichloro-13-ethyl-2,10-dimethyl-13,14-dihydro-12H-dibenzo[d,i][1,3,7,2]dioxazasilecine<br>toluene 0.25-solvate. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71,<br>o1065-o1066. | 0.2 | 0         |
| 81 | N,O-ditosylethanolamine as effective reagent for the synthesis of heterocyclic tertiary amine salts.<br>Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 693-698.                                                                       | 0.8 | Ο         |