List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8668201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication, FTIR, physical characteristics and photon shielding efficacy of CeO2 /sand reinforced borate glasses: Experimental and simulation studies. Radiation Physics and Chemistry, 2022, 191, 109837.	1.4	46
2	Lithium-fluoro borotellurite glasses: Nonlinear optical, mechanical characteristics and gamma radiation protection characteristics. Radiation Physics and Chemistry, 2022, 190, 109819.	1.4	37
3	Fabrication, physical, structural, and optical investigation of cadmium lead-borate glasses doped with Nd3+ ions: AnAexperimental study. Journal of Materials Science: Materials in Electronics, 2022, 33, 1877-1887.	1.1	11
4	CuO reinforced lithium-borate glasses: fabrication, structure, physical properties, and ionizing radiation shielding competence. Journal of the Australian Ceramic Society, 2022, 58, 157-169.	1.1	8
5	Fabrication, physical, linear optical, and nuclear radiation attenuation features of sodium borosilicate glasses. Journal of the Australian Ceramic Society, 2022, 58, 275.	1.1	1
6	Optical, magnetic characteristics, and nuclear radiation shielding capacity of newly synthesized barium boro-vanadate glasses: B2O3–BaF2–Na2O–V2O5. Radiation Physics and Chemistry, 2022, 192, 109922.	1.4	35
7	Influence of Sm2O3 content on photon and fast neutron interaction parameters of zinc-tellurite glasses. Radiation Physics and Chemistry, 2022, 192, 109914.	1.4	13
8	Significant impact of V2O5 content on lead phosphor-arsenate glasses for mechanical and radiation shielding applications. Radiation Physics and Chemistry, 2022, 193, 109956.	1.4	44
9	Synthesis, physical, ultrasonic waves, mechanical, FTIR, and dielectric characteristics of B2O3/Li2O/ZnO glasses doped with Y3+ ions. Journal of Materials Science: Materials in Electronics, 2022, 33, 6603-6615.	1.1	10
10	High density binary TeO2–Bi2O3 glasses: strong potential as a nontoxic and environmentally friendly glass shields for photons/charged particles. Journal of Materials Research and Technology, 2022, 17, 1311-1318.	2.6	7
11	Thermal and Optical Characteristics of Synthesized Sand/CeO2 Glasses: Experimental Approach. Journal of Electronic Materials, 2022, 51, 2070-2076.	1.0	6
12	Investigation of the elastic moduli, optical characteristics, and ionizing radiation attenuation capacity of specific strontium borosilicateÂglasses. Journal of the Australian Ceramic Society, 2022, 58, 495-510.	1.1	5
13	A thorough examination of gadolinium (III)-containing silicate bioactive glasses: synthesis, physical, mechanical, elastic and radiation attenuation properties. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	11
14	Evaluating the optical and gamma-ray protection properties of bismo-tellurite sodium titanium zinc glasses. Journal of the Australian Ceramic Society, 2022, 58, 851-866.	1.1	8
15	Optical and radiation shielding properties of titano-phosphate glasses: influence of BaO. Journal of the Australian Ceramic Society, 2022, 58, 867-880.	1.1	9
16	lonizing radiation shielding efficiency and elastic properties of zirconium/cobalt/nickel/vanadium lithium borotellurite glasses. Journal of the Australian Ceramic Society, 2022, 58, 747-756.	1.1	5
17	Structural, Optical, Magnetic and Photon Attenuation of Novel Potassium Lead Borate Glasses Doped with MnO. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2113-2122.	1.9	3
18	An experimental evaluation of CdO/PbO-B2O3 glasses containing neodymium oxide: Structure, electrical conductivity, and gamma-ray resistance. Materials Research Bulletin, 2022, 151, 111828.	2.7	33

#	Article	IF	CITATIONS
19	Nuclear shielding performances of borate/sodium/potassium glasses doped with Sm3+ ions. Journal of Materials Research and Technology, 2022, 18, 1424-1435.	2.6	12
20	Binary contributions of Dy3+ ions on the mechanical and radiation resistance properties of oxyfluoroborotellurite Dyx-glasses. Journal of Materials Research and Technology, 2022, 18, 820-829.	2.6	3
21	Heavy metal oxide (HMO) glasses as an effective member of glass shield family: A comprehensive characterization on gamma ray shielding properties of various structures. Journal of Materials Research and Technology, 2022, 18, 231-244.	2.6	23
22	Development of Tincal based polypropylene polymeric materials for radiation shielding applications: Experimental, theoretical, and Monte Carlo investigations. Materials Science in Semiconductor Processing, 2022, 146, 106696.	1.9	15
23	Evaluation of Î ³ -rays and neutron shielding parameters of high dense bismo-boro-tellurite glasses: Comparative study. Radiation Physics and Chemistry, 2022, 196, 110149.	1.4	8
24	The role of titania on gamma and neutron attenuation competence of sodium lead borosilicate glasses. Journal of the Australian Ceramic Society, 2022, 58, 939-947.	1.1	5
25	The significant role of WO3 on high-dense BaO–P2O3 glasses: transmission factors and a comparative investigation using commercial and other types of shields. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	13
26	Mechanical properties as well as gamma-ray attenuation competence: a wide-ranging examination into Tb3+ doped boro-germanate-aluminiophosphate (BGAP) glasses. Journal of Materials Research and Technology, 2022, 18, 5062-5074.	2.6	4
27	Spatial distribution and health risk assessment in urban surface soils of Mediterranean Sea region, Cyprus İsland. Arabian Journal of Geosciences, 2022, 15, .	0.6	9
28	Influence of WO3 on gamma radiation shielding efficiency, physical and optical properties of newly developed Li2O – CaO – Bi2O3 – B2O3 glasses. Radiation Physics and Chemistry, 2022, 198, 110240.	1.4	6
29	Fabrication, physical, structure characteristics, neutron and radiation shielding capacityÂof high-density neodymio-cadmium lead-borate glasses: Nd2O3/CdO/PbO/B2O3/Na2O. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	15
30	CeO2-doped bismosiliconate-borotellurite glasses: linear/nonlinear optical properties as well as photon/neutron attenuation effectiveness. Journal of Materials Science: Materials in Electronics, 2022, 33, 14894-14909.	1.1	1
31	Fabrication, physical, FTIR, ultrasonic waves, and mechanical properties of quaternary B2O3–Bi2O3–NaF–ZrO2 glasses: Experimental study. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	7
32	Basicity, Electronegativity, Optical Parameters and Radiation Attenuation Characteristics of P2O5-As2O3-PbO Glasses Doped Vanadium Ions. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3983-3996.	1.9	15
33	Fabrication, physical, mechanical properties, gamma-rays, and neutron shielding abilities of sodium bario-fluoride boro-vanadate glasses: experimental, theoretical, and simulation studies. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	6
34	Transmission factors, mechanical, and gamma ray attenuation properties of barium-phosphate-tungsten glasses: Incorporation impact of WO3. Optik, 2022, 267, 169643.	1.4	11
35	Linear optical characteristics as well as gamma-ray shielding capabilities of quaternary lithium-zinc borate glasses with Y3+ ions. Optical Materials, 2022, 131, 112673.	1.7	13
36	The impact of PbF2 on the ionizing radiation shielding competence and mechanical properties of TeO2–PbF2 glasses and glass-ceramics. Ceramics International, 2021, 47, 2547-2556.	2.3	44

#	Article	IF	CITATIONS
37	Optical properties and radiation shielding features of Er3+ ions doped B2O3–SiO2–Gd2O3–CaO glasses. Ceramics International, 2021, 47, 3421-3429.	2.3	27
38	Nuclear shielding properties of B2O3–Bi2O3–SrO glasses modified with Nd2O3: Theoretical and simulation studies. Ceramics International, 2021, 47, 2772-2780.	2.3	77
39	Physical, optical and gamma radiation shielding competence of newly boro-tellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Ceramics International, 2021, 47, 611-618.	2.3	108
40	The effects of V2O5/K2O substitution on linear and nonlinear optical properties and the gamma ray shielding performance of TVK glasses. Ceramics International, 2021, 47, 1012-1020.	2.3	24
41	Linear optical features and radiation shielding competence of ZnO–B2O3–TeO2-Eu2O3 glasses: Role of Eu3+ ions. Optical Materials, 2021, 111, 110525.	1.7	12
42	Breeding behavior of radiation-induced effects in organic materials and their possible use as radiation dosimeters. Journal of Physics and Chemistry of Solids, 2021, 150, 109814.	1.9	10
43	Physical, optical, thermal, and gamma-ray shielding features of fluorotellurite lithiumniobate glasses: TeO2-LiNbO3-BaO-BaF2-La2O3. Journal of Materials Science: Materials in Electronics, 2021, 32, 3743-3752.	1.1	12
44	Transparent Alumino Lithium Borate Glass-Ceramics: Synthesis, Structure and Gamma-Ray Shielding Attitude. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2560-2568.	1.9	55
45	Synthesis, structure, physical, dielectric characteristics, and gamma-ray shielding competences of novel P2O5–Li2O–ZnO–CdO glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 1877-1887.	1.1	31
46	Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications. Nuclear Engineering and Technology, 2021, 53, 282-293.	1.1	62
47	Synthesis, physical, optical properties, and gamma-ray absorbing competency or capability of PbO–B2O3–CaO glasses reinforced with Nd3+/Er3+ ions. European Physical Journal Plus, 2021, 136, 1.	1.2	3
48	Effects of AgO addition on the mechanical, optical, and radiation attenuation properties of V2O5/P2O5/B2O3 glass system. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	11
49	Photon and neutron absorbing capacity of titanate-reinforced borate glasses: B2O3–Li2O–Al2O3–TiO2. Journal of Materials Science: Materials in Electronics, 2021, 32, 7377-7390.	1.1	3
50	Ta2O5 reinforced Bi2O3–TeO2–ZnO glasses: Fabrication, physical, structural characterization, and radiation shielding efficacy. Optical Materials, 2021, 112, 110757.	1.7	59
51	Investigation of mechanical properties, photons, neutrons, and charged particles shielding characteristics of Bi2O3/B2O3/SiO2 glasses. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	12
52	Multiple characterization of some glassy-alloys as photon and neutron shields: In-silico Monte Carlo investigation. Materials Research Express, 2021, 8, 035202.	0.8	9
53	Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code. Nuclear Engineering and Technology, 2021, , .	1.1	24
54	A New Derivation of Exact Solutions for Incompressible Magnetohydrodynamic Plasma Turbulence. Journal of Nanofluids, 2021, 10, 98-105.	1.4	8

#	Article	IF	CITATIONS
55	Responsibility of Bi2O3 Content in Photon, Alpha, Proton, Fast and Thermal Neutron Shielding Capacity and Elastic Moduli of ZnO/B2O3/Bi2O3 Glasses. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3505-3524.	1.9	53
56	The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	40
57	Bi2O3 reinforced B2O3 + Sb2O3 + Li2O: composition, physical, linear optical characteristics, ar attenuation capacity. Journal of Materials Science: Materials in Electronics, 2021, 32, 12439-12452.	nd photon	8
58	Evaluation of radiation shielding capacity of vanadium–tellurite–antimonite semiconducting glasses. Optical Materials, 2021, 114, 110897.	1.7	27
59	B2O3-Bi2O3-Li2O3-Cr2O3 glasses: fabrication, structure, mechanical, and gamma radiation shielding qualities. Journal of the Australian Ceramic Society, 2021, 57, 1057-1069.	1.1	17
60	SrO-reinforced potassium sodium borophosphate bioactive glasses: Compositional, physical, spectral, structural properties and photon attenuation competence. Journal of Non-Crystalline Solids, 2021, 559, 120667.	1.5	21
61	Ultrasonic waves, mechanical properties and radiation shielding competence of Er3+ doped lead borate glasses: experimental and theoretical investigations. Journal of the Australian Ceramic Society, 2021, 57, 1163-1176.	1.1	5
62	On Y2O3·Li2O·Al2O3·B2O3 glasses: synthesis, structure, physical, optical characteristics and gamma-ray shielding behavior. Journal of Materials Science: Materials in Electronics, 2021, 32, 16242-16254.	1.1	16
63	Gamma-ray shielding capacity of different B4C-, Re-, and Ni-based superalloys. European Physical Journal Plus, 2021, 136, 1.	1.2	9
64	Extensive study of the optical, mechanical properties, and gamma photon shielding effectiveness of potassium titanate biso-phosphate glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 18145-18162.	1.1	3
65	The impact of Nd3+ ions on linear/nonlinear and the ionizing radiation attenuation parameters of TeO2-PbO-Y2O3 glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 17200-17219.	1.1	3
66	Optical, gamma ray, and neutron-shielding properties of TeO2–WO3–Bi2O3 glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 18837-18848.	1.1	2
67	Synthesis, physical, linear optical and nuclear radiation shielding characteristics of B2O3–BaO–PbO–SrO2 glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 18163-18177.	1.1	4
68	Fabrication, physical, thermal and optical properties of oxyfluoride glasses doped with rare earth oxides. Journal of Materials Science: Materials in Electronics, 2021, 32, 18951-18967.	1.1	1
69	FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/ erbium (III) lead-borate glasses: experimental studies. Journal of Materials Research and Technology, 2021, 13, 1363-1373.	2.6	40
70	Radiation shielding, optical, and physical properties of alkali borate glasses modified with Cu2+/Zn2+ ions. Journal of Materials Science: Materials in Electronics, 2021, 32, 19733-19741.	1.1	4
71	Physical, FTIR, ultrasonic, and dielectric characteristics of calcium lead-borate glasses mixed by Nd2O3/Er2O3 rare earths: experimental study. Journal of Materials Science: Materials in Electronics, 2021, 32, 19966-19979.	1.1	8
72	Mechanical properties and elastic moduli, as well as gamma-ray attenuation abilities: A wide-ranging investigation into calcium/sodium/phosphate glasses. Journal of the Australian Ceramic Society, 2021, 57, 1309-1319.	1.1	9

#	Article	IF	CITATIONS
73	Er3+/Nd3+ ions reinforced lead-borate glasses: an extensive investigation of physical, linear optical characteristics, and photon shielding capacity. Journal of Materials Research and Technology, 2021, 14, 3161-3170.	2.6	11
74	Investigation of mechanical, photon buildup factors, and neutron-sensing properties of B2O3–Al2O3–Li2O–CuO glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 24401-24414.	1.1	9
75	Structural, optical, mechanical and simulating the gamma-ray shielding competencies of novel cadmium bismo-borate glasses: The impact of bismuth oxide. Journal of Materials Science: Materials in Electronics, 2021, 32, 24381-24393.	1.1	7
76	Synthesis, physical properties, and gamma–ray shielding capacity of different Ni-based super alloys. Radiation Physics and Chemistry, 2021, 186, 109483.	1.4	14
77	New shielding ZnO-PbO-TeO2 glasses. Optik, 2021, 243, 167483.	1.4	8
78	ZnO-Bi2O3-B2O3 glasses doped with rare earth oxides: Synthesis, physical, structural characteristics, neutron and photon attenuation attitude. Optik, 2021, 243, 167414.	1.4	9
79	The influence of BaO on the mechanical and gamma / fast neutron shielding properties of lead phosphate glasses. Nuclear Engineering and Technology, 2021, 53, 3816-3823.	1.1	15
80	Mixed modifier effect in lithium manganese metaphosphate glasses on the emission of highly dispersed Mn2+ centers for red-LED. Ceramics International, 2021, 47, 32424-32432.	2.3	18
81	Fabrication, structural, optical, and dielectric properties of PVC-PbO nanocomposites, as well as their gamma-ray shielding capability. Radiation Physics and Chemistry, 2021, 189, 109753.	1.4	42
82	Prediction of the linear/nonlinear optical, kinetics, mechanical and gamma-ray shielding features of MgO-WO3-TeO2-BaO glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 3591-3602.	1.1	2
83	SrO Effect on Photon/Particle Radiation Protection Characteristics of SrO–PbO–B2O3 Glasses. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4546.	1.9	8
84	On B2O3/Bi2O3/Na2O/Gd2O3 glasses: synthesis, structure, physical characteristics, and gamma-ray attenuation competence. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
85	Mechanical Properties, Elastic Moduli, and Gamma Radiation Shielding Properties of Some Zinc Sodium Tetraborate Glasses: A Closer Look at ZnO/CaO Substitution. Journal of Electronic Materials, 2021, 50, 6844-6853.	1.0	13
86	Glass fabrication using ceramic and porcelain recycled waste and lithium niobate: physical, structural, optical and nuclear radiation attenuation properties. Journal of Materials Research and Technology, 2021, 15, 4074-4085.	2.6	36
87	Fabrication, linear/nonlinear optical properties, Judd–Ofelt parameters and gamma-ray attenuation capacity of Er2O3 doped P2O5–ZnO–CdO glasses. Journal of Materials Research and Technology, 2021, 15, 5540-5553.	2.6	11
88	Enhancement of Gamma-ray Shielding Properties in Cobalt-Doped Heavy Metal Borate Glasses: The Role of Lanthanum Oxide Reinforcement. Materials, 2021, 14, 7703.	1.3	33
89	B2O3–BaCO3–Li2O3 glass system doped with Co3O4: Structure, optical, and radiation shielding properties. Physica B: Condensed Matter, 2020, 576, 411717.	1.3	69
90	Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceramics International, 2020, 46, 3190-3202.	2.3	80

#	Article	IF	CITATIONS
91	Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceramics International, 2020, 46, 2055-2062.	2.3	150
92	Structure, optical, gamma-ray and neutron shielding properties of NiO doped B2O3–BaCO3–Li2O3 glass systems. Ceramics International, 2020, 46, 1711-1721.	2.3	117
93	Investigation of gamma-ray shielding capability of glasses doped with Y, Gd, Nd, Pr and Dy rare earth using MCNP-5 code. Physica B: Condensed Matter, 2020, 577, 411756.	1.3	47
94	Lead borate glasses doped by lanthanum: Synthesis, physical, optical, and gamma photon shielding properties. Journal of Non-Crystalline Solids, 2020, 527, 119731.	1.5	29
95	Gamma irradiation effect towards photoluminescence and optical properties of Makrofol DE 6-2. Radiation Physics and Chemistry, 2020, 168, 108578.	1.4	28
96	Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Physica B: Condensed Matter, 2020, 581, 411946.	1.3	121
97	Radiation sensing properties of tellurite glasses belonging to ZnO–TeO2–PbO system using Geant4 code. Radiation Physics and Chemistry, 2020, 170, 108632.	1.4	26
98	Influence of ZrO2 on gamma shielding properties of lead borate glasses. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	64
99	Mechanical, optical, and beta/gamma shielding properties of alkali tellurite glasses: Role of ZnO. Ceramics International, 2020, 46, 28594-28602.	2.3	28
100	Preparation, physical, structural, optical characteristics, and gamma-ray shielding features of CeO2 containing bismuth barium borate glasses. Journal of Materials Science: Materials in Electronics, 2020, 31, 20060-20071.	1.1	13
101	Evaluation of optical features and ionizing radiation shielding competences of TeO2–Li2O (TL) glasses via Geant4 simulation code and Phy-X/PSD program. Optical Materials, 2020, 108, 110394.	1.7	25
102	Linear, nonlinear optical and photon attenuation properties of La3+ doped tellurite glasses. Optical Materials, 2020, 108, 110196.	1.7	27
103	Charged particles and gamma-ray shielding features of oxyfluoride semiconducting glasses: TeO2-Ta2O5-ZnO/ZnF2. Ceramics International, 2020, 46, 25035-25042.	2.3	43
104	Elastic moduli, photon, neutron, and proton shielding parameters of tellurite bismo-vanadate (TeO2–V2O5–Bi2O3) semiconductor glasses. Ceramics International, 2020, 46, 25440-25452.	2.3	60
105	Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth. Physica B: Condensed Matter, 2020, 583, 412055.	1.3	69
106	The f-factor, neutron, gamma radiation and proton shielding competences of glasses with Pb or Pb/Bi heavy elements for nuclear protection applications. Ceramics International, 2020, 46, 27163-27174.	2.3	31
107	Investigation of mechanical features and gamma-ray shielding efficiency of ternary TeO2-based glass systems containing Li2O, Na2O, K2O, or ZnO. Ceramics International, 2020, 46, 27561-27569.	2.3	31
108	Environment friendly La3+ ions doped phosphate glasses/glass-ceramics for gamma radiation shielding: Their potential in nuclear safety applications. Ceramics International, 2020, 46, 27616-27626.	2.3	35

#	Article	IF	CITATIONS
109	Assessment of gamma-ray attenuation features for La+3 co-doped zinc borotellurite glasses. Radiation Physics and Chemistry, 2020, 176, 109069.	1.4	31
110	The effects of La2O3 addition on mechanical and nuclear shielding properties for zinc borate glasses using Monte Carlo simulation. Ceramics International, 2020, 46, 29191-29198.	2.3	75
111	Influence of Er3+-doped ions on the linear/nonlinear optical characteristics and radiation shielding features of TeO2-ZnO-Er2O3 glasses. Journal of Materials Science: Materials in Electronics, 2020, 31, 21431-21443.	1.1	5
112	Characterization of zinc lead-borate glasses doped with Fe3+ ions: optical, dielectric, and ac-conductivity investigations. Journal of Materials Science: Materials in Electronics, 2020, 31, 17044-17054.	1.1	20
113	Electronic polarizability, dielectric and gamma-ray shielding features of PbO–P2O5–Na2O–Al2O3 glasses doped with MoO3. Journal of Materials Science: Materials in Electronics, 2020, 31, 22075-22084.	1.1	3
114	Gamma-ray/neutron shielding capacity and elastic moduli of MnO–K2O–B2O3 glasses co-doped with Er3+ ions. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	3
115	Tm3+ ions-doped phosphate glasses: nuclear shielding competence and elastic moduli. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	4
116	Gamma-ray attenuation competences and optical characterization of MgO–MoO3–TeO2–BaO glasses. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	2
117	Influence of Ag2O insertion on alpha, proton and γ-rays safety features of TeO2.ZnO.Na2O glasses: Potential use for nuclear medicine applications. Ceramics International, 2020, 46, 18151-18159.	2.3	27
118	Novel zinc vanadyl boro-phosphate glasses: ZnO–V2O5– P2O5–B2O3: Physical, thermal, and nuclear radiation shielding properties. Ceramics International, 2020, 46, 19318-19327.	2.3	66
119	Gamma ray shielding capacity and build up factors of CdO doped lithium borate glasses: theoretical and simulation study. Journal of Non-Crystalline Solids, 2020, 541, 120110.	1.5	43
120	Radiation attenuation and optical features of lithium borate glasses containing barium: B2O3.Li2O.BaO. Ceramics International, 2020, 46, 21000-21007.	2.3	20
121	Ionizing radiation attenuation competences of gallium germanate-tellurite glasses utilizing MCNP5 simulation code and Phy-X/PSD program. Ceramics International, 2020, 46, 22766-22773.	2.3	24
122	Role of ZnO on TeO2.Li2O.ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WINXCOM program. Journal of Non-Crystalline Solids, 2020, 544, 120162.	1.5	68
123	The impact of lead oxide on the optical and gamma shielding properties of barium borate glasses. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	36
124	Evaluation of nuclear radiation shielding competence for ternary Ge–Sb–S chalcogenide glasses. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	47
125	Radiation shielding properties of PNCKM bioactive glasses at nuclear medicine energies. Ceramics International, 2020, 46, 15027-15033.	2.3	62
126	Nuclear radiation shielding using barium borosilicate glass ceramics. Journal of Physics and Chemistry of Solids, 2020, 142, 109437.	1.9	92

#	Article	IF	CITATIONS
127	Impact of Ag2O on linear, nonlinear optical and gamma-ray shielding features of ternary silver vanadio-tellurite glasses: TeO2–V2O5–Ag2O. Ceramics International, 2020, 46, 22964-22972.	2.3	28
128	Direct influence of La on structure, optical and gamma-ray shielding properties of lead borate glasses. Radiation Physics and Chemistry, 2020, 177, 109085.	1.4	15
129	Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code. Journal of Non-Crystalline Solids, 2020, 545, 120245.	1.5	75
130	Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceramics International, 2020, 46, 23134-23144.	2.3	107
131	Evaluation of photon, neutron, and charged particle shielding competences of TeO2-B2O3-Bi2O3-TiO2 glasses. Journal of Non-Crystalline Solids, 2020, 535, 119960.	1.5	52
132	Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. Journal of Non-Crystalline Solids, 2020, 533, 119905.	1.5	96
133	Novel vanadyl lead-phosphate glasses: P2O5–PbO–ZnO Na2O–V2O5: Synthesis, optical, physical and gamma photon attenuation properties. Journal of Non-Crystalline Solids, 2020, 534, 119944.	1.5	87
134	The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceramics International, 2020, 46, 23357-23368.	2.3	83
135	FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses. Journal of Materials Science: Materials in Electronics, 2020, 31, 9099-9113.	1.1	90
136	The radiation-shielding properties of ternary SiO2–SnO–SnF2 glasses: Simulation and theoretical study. Ceramics International, 2020, 46, 23369-23378.	2.3	62
137	Optical properties and nuclear radiation shielding capacity of TeO2-Li2O-ZnO glasses. Optical Materials, 2020, 106, 109988.	1.7	57
138	Fabrication, physical characteristic, and gamma-photon attenuation parameters of newly developed molybdenum reinforced bismuth borate glasses. Physica Scripta, 2020, 95, 115703.	1.2	34
139	Stability Analysis of Magnetohydrodynamics Waves in Compressible Turbulent Plasma. Journal of Nanofluids, 2020, 9, 196-202.	1.4	7
140	Optical properties of bismuth borotellurite glasses doped with NdCl3. Journal of Molecular Structure, 2019, 1175, 504-511.	1.8	62
141	Crystal structure, optical and electrical characteristics of rutile \$\$hbox {TiO}_{2}\$\$ nanocrystallite-based photoanodes doped with \$\$hbox {GeO}_{2}\$\$. Bulletin of Materials Science, 2019, 42, 1.	0.8	3
142	Synthesis, physical, structural and shielding properties of newly developed B2O3–ZnO–PbO–Fe2O3 glasses using Geant4 code and WinXCOM program. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	59
143	Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3 – Bi2O3 – ZnO – CaO glasses. Ceramics International, 2019, 45, 20724-20732.	2.3	98
144	Magnetic Moment and its Correlation with the Critical Temperature in YBCO. InterCeram: International Ceramic Review, 2019, 68, 34-41.	0.2	2

#	Article	IF	CITATIONS
145	Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code. Journal of Molecular Structure, 2019, 1197, 656-665.	1.8	114
146	Optical and Electrical Properties of Lead Borate Glasses. Journal of Electronic Materials, 2019, 48, 5624-5631.	1.0	26
147	Effect of Bi2O3 on some optical and gamma-photon-shielding properties of new bismuth borate glasses. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	17
148	Electrical and optical properties of Makrofol DE 1-1 polymeric films induced by gamma irradiation. Bulletin of the National Research Centre, 2019, 43, .	0.7	23
149	Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	93
150	Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	77
151	Evaluation of photon attenuation and optical characterizations of bismuth lead borate glasses modified by TiO2. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	48
152	Investigation of gamma-ray shielding properties of bismuth borotellurite glasses using MCNPX code and XCOM program. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	22
153	Synthesis, structure, optical and gamma radiation shielding properties of B2O3-PbO2-Bi2O3 glasses. Composites Part B: Engineering, 2019, 172, 218-225.	5.9	59
154	Optical, magnetic characterization, and gamma-ray interactions for borate glasses using XCOM program. Journal of Theoretical and Applied Physics, 2019, 13, 155-164.	1.4	15
155	The influence of TiO2 on structural, physical and optical properties of B2O3 –TeO2 – Na2O – CaO glasses. Journal of Non-Crystalline Solids, 2019, 514, 52-59.	1.5	77
156	Structural, UV and shielding properties of ZBPC glasses. Journal of Non-Crystalline Solids, 2019, 509, 99-105.	1.5	89
157	Sm2O3 effects on mass stopping power/projected range and nuclear shielding characteristics of TeO2–ZnO glass systems. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	75
158	γ-ray shielding features and crystallization of TiO2 borotellurite glasses. Journal of Non-Crystalline Solids, 2019, 526, 119720.	1.5	38
159	Evaluation of radiation shielding ability of boro-tellurite glasses: TeO2–B2O3–SrCl2–LiF–Bi2O3. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	26
160	New transparent rare earth glasses for radiation protection applications. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	67
161	Modifications of the optical properties for DAM-ADC nuclear track detector exposed to alpha particles. Radiation Physics and Chemistry, 2018, 146, 42-46.	1.4	19
162	Structural, optical, and electrical characterization of borate glasses doped with SnO2. Journal of Non-Crystalline Solids, 2018, 494, 59-65.	1.5	65

#	Article	IF	CITATIONS
163	UV and electrical properties of TeO2-WO3-Li2O-Nb2O5/Sm2O3/Pr6O11/Er2O3 glasses. Journal of Non-Crystalline Solids, 2018, 498, 443-447.	1.5	24
164	Effect of PbO on optical properties of tellurite glass. Results in Physics, 2018, 8, 16-25.	2.0	82
165	Optical properties and gamma-shielding features of bismuth borate glasses. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	106
166	Simulating the radial dose distribution for charged particles in water medium by a semi-empirical model: An analytical approach. Applied Radiation and Isotopes, 2018, 142, 135-142.	0.7	6
167	FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	87
168	ZnO-B2O3-PbO glasses: Synthesis and radiation shielding characterization. Physica B: Condensed Matter, 2018, 548, 20-26.	1.3	92
169	Simulation of radiation shielding properties of glasses contain PbO. Radiation Physics and Chemistry, 2018, 151, 239-252.	1.4	104
170	FTIR and UV spectra of pentaternary borate glasses. Measurement: Journal of the International Measurement Confederation, 2017, 105, 72-77.	2.5	90
171	Study of the optical properties and the carbonaceous clusters in DAM-ADC solid state nuclear track detectors. Radiation Physics and Chemistry, 2017, 141, 125-130.	1.4	16
172	Pinning Behaviour of Nano Nonmagnetic CuO, SnO2 and Magnetic Mn3O4 Substitutions in YBCO Bulk Superconductors. InterCeram: International Ceramic Review, 2016, 65, 17-24.	0.2	1
173	Optical characterization of new borate glass doped with titanium oxide. Journal of Materials Science: Materials in Electronics, 2016, 27, 1384-1390.	1.1	53
174	Fast detection of alpha particles in DAM–ADC nuclear track detectors. Radiation Physics and Chemistry, 2015, 107, 183-188.	1.4	11
175	Linear/nonlinear optical parameters along with photon attenuation effectiveness of Dy3+ ions doped zinc-aluminoborosilicate glasses. Physica Scripta, 0, , .	1.2	12
176	Preparation, structural, optical characteristics, and photon/neutron attenuation competence of sodium fluoroborate glasses: Experimental and simulation investigation. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	0