Lingju Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8668194/publications.pdf Version: 2024-02-01

LINCUL MENC

#	Article	IF	CITATIONS
1	Doping Colloidal Quantum Dot Materials and Devices for Photovoltaics. Energies, 2022, 15, 2458.	1.6	6
2	Laser induction of graphene onto lignin-upgraded flexible polymer matrix. Materials Letters, 2021, 286, 129268.	1.3	12
3	Luminescent films employing quantum dot-cellulose nanocrystal hybrid nanomaterials. Materials Letters, 2021, 294, 129737.	1.3	7
4	Silicon Surface Passivation for Silicon-Colloidal Quantum Dot Heterojunction Photodetectors. ACS Nano, 2021, 15, 18429-18436.	7.3	20
5	Unusual Surface Ligand Doping-Induced p-Type Quantum Dot Solids and Their Application in Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 53942-53949.	4.0	9
6	Ultrafast Colloidal Quantum Dot Infrared Photodiode. ACS Photonics, 2020, 7, 1297-1303.	3.2	40
7	Single-Walled Carbon Nanotube Based Triboelectric Flexible Touch Sensors. Journal of Electronic Materials, 2019, 48, 7411-7416.	1.0	8
8	Surface-Modified Substrates for Quantum Dot Inks in Printed Electronics. ACS Omega, 2019, 4, 4161-4168.	1.6	15
9	Polymer Microelectromechanical System-Integrated Flexible Sensors for Wearable Technologies. IEEE Sensors Journal, 2019, 19, 443-450.	2.4	11
10	Reducing shadowing losses in silicon solar cells using cellulose nanocrystal: polymer hybrid diffusers. Applied Optics, 2019, 58, 2505.	0.9	15
11	Nanocrystal-filled polymer for improving angular color uniformity of phosphor-converted white LEDs. Applied Optics, 2019, 58, 7649.	0.9	4
12	On-chip colloidal quantum dot devices with a CMOS compatible architecture for near-infrared light sensing. Optics Letters, 2019, 44, 463.	1.7	14
13	Triboelectric flexible sensors employing single-walled carbon nanotube field-effect transistors. , 2018, , .		Ο
14	Digital microelectromechanical sensor with an engineered polydimethylsiloxane (PDMS) bridge structure. Nanoscale, 2017, 9, 1257-1262.	2.8	12
15	Improved response time of flexible microelectromechanical sensors employing eco-friendly nanomaterials. Nanoscale, 2017, 9, 16915-16921.	2.8	13
16	Cellulose nanocrystals as host matrix and waveguide materials for recyclable luminescent solar concentrators. RSC Advances, 2017, 7, 32436-32441.	1.7	18
17	Field-effect enhanced triboelectric colloidal quantum dot flexible sensor. Applied Physics Letters, 2017, 111, .	1.5	12
18	Stretchable Hexagonal Diffraction Gratings as Optical Diffusers for In Situ Tunable Broadband Photon Management. Advanced Optical Materials, 2016, 4, 1106-1114.	3.6	32

Lingju Meng

#	Article	IF	CITATIONS
19	Strain sensors on water-soluble cellulose nanofibril paper by polydimethylsiloxane (PDMS) stencil lithography. RSC Advances, 2016, 6, 85427-85433.	1.7	26
20	Observation of localized surface plasmons and hybridized surface plasmon polaritons on self-assembled two-dimensional nanocavities. Optics Letters, 2016, 41, 1506.	1.7	1
21	In-Plane Coassembly Route to Atomically Thick Inorganic–Organic Hybrid Nanosheets. ACS Nano, 2013, 7, 1682-1688.	7.3	45