
Reinhard Schomäcker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8668122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 2018, 140, 1423-1427.	13.7	646
2	Dilute lamellar and L3phases in the binary water–C12E5system. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 2253-2261.	1.7	413
3	Microemulsions in Technical Processes. Chemical Reviews, 1995, 95, 849-864.	47.7	408
4	CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Applied Catalysis A: General, 2004, 259, 83-94.	4.3	280
5	Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications, 2017, 53, 5854-5857.	4.1	206
6	A Critical Assessment of Li/MgO-Based Catalysts for the Oxidative Coupling of Methane. Catalysis Reviews - Science and Engineering, 2011, 53, 424-514.	12.9	205
7	Protonated Imineâ€Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19797-19803.	13.8	171
8	Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics. Journal of Catalysis, 2007, 246, 177-192.	6.2	170
9	Thermoregulated Liquid/Liquid Catalyst Separation and Recycling. Advanced Synthesis and Catalysis, 2006, 348, 1485-1495.	4.3	139
10	Partial oxidation of ethanol on vanadia catalysts on supporting oxides with different redox properties compared to propane. Journal of Catalysis, 2012, 296, 120-131.	6.2	138
11	Steam reforming of methanol over Cu/ZrO/CeO catalysts: a kinetic study. Journal of Catalysis, 2005, 230, 464-475.	6.2	131
12	Oxidative Dehydrogenation of Ethane over Multiwalled Carbon Nanotubes. ChemCatChem, 2010, 2, 644-648.	3.7	130
13	Techno-Economic Assessment Guidelines for CO2 Utilization. Frontiers in Energy Research, 2020, 8, .	2.3	121
14	Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane Science, 2008, 308, 152-161.	8.2	118
15	Oxidative coupling of methane—A complex surface/gas phase mechanism with strong impact on the reaction engineering. Catalysis Today, 2014, 228, 212-218.	4.4	114
16	An integrated approach to Deacon chemistry on RuO2-based catalysts. Journal of Catalysis, 2012, 285, 273-284.	6.2	111
17	Nanostructured Manganese Oxides as Highly Active Water Oxidation Catalysts: A Boost from Manganese Precursor Chemistry. ChemSusChem, 2014, 7, 2202-2211.	6.8	110
18	Alumina coated nickel nanoparticles as a highly active catalyst for dry reforming of methane. Applied Catalysis B: Environmental, 2015, 179, 122-127.	20.2	108

#	Article	IF	CITATIONS
19	Liquidâ^'Liquid Phase Equilibrium in Glycerolâ^'Methanolâ^'Methyl Oleate and Glycerolâ 'Monooleinâ 'Methyl Oleate Ternary Systems. Industrial & Engineering Chemistry Research, 2006, 45, 3693-3696.	3.7	102
20	Donor–Acceptorâ€Type Heptazineâ€Based Polymer Networks for Photocatalytic Hydrogen Evolution. Energy Technology, 2016, 4, 744-750.	3.8	102
21	Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol. ACS Catalysis, 2017, 7, 1403-1412.	11.2	102
22	Oxidative dehydrogenation of propane over low-loaded vanadia catalysts: Impact of the support material on kinetics and selectivity. Journal of Molecular Catalysis A, 2008, 289, 28-37.	4.8	100
23	Mesoporous Carbon Nitrideâ€Tungsten Oxide Composites for Enhanced Photocatalytic Hydrogen Evolution. ChemSusChem, 2015, 8, 1404-1410.	6.8	98
24	Hydrogen Evolution Reaction in a Largeâ€Scale Reactor using a Carbon Nitride Photocatalyst under Natural Sunlight Irradiation. Energy Technology, 2015, 3, 1014-1017.	3.8	97
25	Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments. Journal of Catalysis, 2016, 341, 91-103.	6.2	92
26	Hydroformylation of 1-dodecene using Rh-TPPTS in a microemulsion. Applied Catalysis A: General, 2002, 225, 239-249.	4.3	88
27	Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor. Dalton Transactions, 2013, 42, 12644.	3.3	88
28	Lipase-catalysed ester synthesis in oil-continuous microemulsions. BBA - Proteins and Proteomics, 1987, 912, 278-282.	2.1	86
29	In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nature Chemistry, 2012, 4, 739-745.	13.6	85
30	Catalytic Membrane Reactors for Partial Oxidation Using Perovskite Hollow Fiber Membranes and for Partial Hydrogenation Using a Catalytic Membrane Contactor. Industrial & Engineering Chemistry Research, 2007, 46, 2286-2294.	3.7	80
31	Quantification of photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2013, 15, 3466.	2.8	80
32	Hydroformylation of 1â€Dodecene with Waterâ€Soluble Rhodium Catalysts with Bidentate Ligands in Multiphase Systems. ChemCatChem, 2013, 5, 1854-1862.	3.7	76
33	Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments. Journal of Catalysis, 2018, 360, 102-117.	6.2	76
34	Specifying Technology Readiness Levels for the Chemical Industry. Industrial & Engineering Chemistry Research, 2019, 58, 6957-6969.	3.7	74
35	One-Pot Synthesis of Supported, Nanocrystalline Nickel Manganese Oxide for Dry Reforming of Methane. ACS Catalysis, 2013, 3, 224-229.	11.2	72
36	On the nanoparticle synthesis in microemulsions: detailed characterization of an applied reaction mixture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 163, 3-15.	4.7	70

#	Article	IF	CITATIONS
37	What Makes a Good Catalyst for the Deacon Process?. ACS Catalysis, 2013, 3, 1034-1046.	11.2	69
38	Support material variation for the Mn O -Na2WO4/SiO2 catalyst. Catalysis Today, 2014, 228, 5-14.	4.4	69
39	Fluidized bed processing of sodium tungsten manganese catalysts for the oxidative coupling of methane. Chemical Engineering Journal, 2011, 168, 1352-1359.	12.7	68
40	Interaction of enzymes with surfactants in aqueous solution and in water-in-oil microemulsions. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 4203.	1.0	67
41	High-Surface-Area SBA-15 with Enhanced Mesopore Connectivity by the Addition of Poly(vinyl alcohol). Chemistry of Materials, 2011, 23, 2062-2067.	6.7	63
42	Microemulsion systems for catalytic reactions and processes. Catalysis Science and Technology, 2015, 5, 24-33.	4.1	63
43	Chemical looping as reactor concept for the oxidative coupling of methane over a Na 2 WO 4 /Mn/SiO 2 catalyst. Chemical Engineering Journal, 2016, 306, 646-654.	12.7	63
44	Techno-economic Assessment Framework for the Chemical Industry—Based on Technology Readiness Levels. Industrial & Engineering Chemistry Research, 2018, 57, 8502-8517.	3.7	63
45	Assessing Earlyâ€Stage CO ₂ utilization Technologies—Comparing Apples and Oranges?. Energy Technology, 2017, 5, 850-860.	3.8	62
46	Surface Carbon as a Reactive Intermediate in Dry Reforming of Methane to Syngas on a 5% Ni/MnO Catalyst. ACS Catalysis, 2018, 8, 8739-8750.	11.2	60
47	Li-doped MgO From Different Preparative Routes for the Oxidative Coupling of Methane. Topics in Catalysis, 2011, 54, 1266-1285.	2.8	59
48	Pt/TiO2 photocatalysts deposited on commercial support for photocatalytic reduction of CO2. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 72-80.	3.9	59
49	Halloysites Stabilized Emulsions for Hydroformylation of Long Chain Olefins. Advanced Materials Interfaces, 2017, 4, 1600435.	3.7	57
50	Mass and heat transfer effects on the oxidative dehydrogenation of propane (ODP) over a low loaded VOx/Al2O3 catalyst. Applied Catalysis A: General, 2007, 323, 66-76.	4.3	55
51	Stability and activity of alcohol dehydrogenases in W/O-microemulsions: Enantioselective reduction including cofactor regeneration. Biotechnology and Bioengineering, 2000, 70, 638-646.	3.3	54
52	COSMO-RS and UNIFAC in Prediction of Micelle/Water Partition Coefficients. Industrial & Engineering Chemistry Research, 2007, 46, 6501-6509.	3.7	53
53	<i>In situ</i> observation of pH change during water splitting in neutral pH conditions: impact of natural convection driven by buoyancy effects. Energy and Environmental Science, 2020, 13, 5104-5116.	30.8	53
54	Selectivity of partial hydrogenation reactions performed in a pore-through-flow catalytic membrane reactor. Catalysis Today, 2005, 104, 305-312.	4.4	50

Reinhard SchomÄöker

#	Article	IF	CITATIONS
55	Rhodium catalyzed hydrogenation reactions in aqueous micellar systems as green solvents. RSC Advances, 2011, 1, 474.	3.6	50
56	High performance (VOx)n–(TiOx)m/SBA-15 catalysts for the oxidative dehydrogenation of propane. Catalysis Science and Technology, 2014, 4, 786.	4.1	50
57	Catalysis of a Diels-Alder cycloaddition with differently fabricated molecularly imprinted polymers. Catalysis Communications, 2005, 6, 601-606.	3.3	49
58	Facile one-pot synthesis of Pt nanoparticles /SBA-15: an active and stable material for catalytic applications. Energy and Environmental Science, 2011, 4, 2020.	30.8	49
59	Engineering Aspects of Preparation of Nanocrystalline Particles in Microemulsions. Journal of Nanoparticle Research, 1999, 1, 267-276.	1.9	47
60	Sol–gel method for synthesis of Mn–Na2WO4/SiO2 catalyst for methane oxidative coupling. Catalysis Today, 2014, 236, 12-22.	4.4	47
61	Potential of High-Frequency EPR for Investigation of Supported Vanadium Oxide Catalysts. Journal of Physical Chemistry C, 2008, 112, 17664-17671.	3.1	46
62	Oxidative dehydrogenation of propane on silica (SBA-15) supported vanadia catalysts: A kinetic investigation. Journal of Molecular Catalysis A, 2009, 307, 43-50.	4.8	45
63	Feasibility study of the Mn–Na ₂ WO ₄ /SiO ₂ catalytic system for the oxidative coupling of methane in a fluidized-bed reactor. Catalysis Science and Technology, 2015, 5, 942-952.	4.1	43
64	Comparison of phase transfer agents in the aqueous biphasic hydroformylation of higher alkenes. Catalysis Science and Technology, 2013, 3, 600-605.	4.1	42
65	Silica material variation for the MnxOy-Na2WO4/SiO2. Applied Catalysis A: General, 2016, 525, 168-179.	4.3	41
66	Stepwise Methaneâ€ŧoâ€Methanol Conversion on CuO/SBAâ€15. Chemistry - A European Journal, 2018, 24, 12592-12599.	3.3	41
67	A novel technique for preparation of aminated polyimide membranes with microfiltration characteristics. Journal of Membrane Science, 2003, 223, 171-185.	8.2	39
68	Chemical looping as a reactor concept for the oxidative coupling of methane over the MnxOy-Na2WO4/SiO2 catalyst, benefits and limitation. Catalysis Today, 2018, 311, 40-47.	4.4	39
69	Reoxidation dynamics of highly dispersed VOx species supported on Î ³ -alumina. Applied Catalysis A: General, 2009, 353, 288-295.	4.3	38
70	Support effect in the preparation of supported metal catalysts <i>via</i> microemulsion. RSC Advances, 2014, 4, 50955-50963.	3.6	38
71	Photocatalytic reduction of CO2 to hydrocarbons by using photodeposited Pt nanoparticles on carbon-doped titania. Catalysis Today, 2019, 328, 8-14.	4.4	38
72	Integration of techno-economic and life cycle assessment: Defining and applying integration types for chemical technology development. Journal of Cleaner Production, 2021, 287, 125021.	9.3	38

Reinhard SchomÃøker

#	Article	IF	CITATIONS
73	Characterization of Palladium Nanoparticles Adsorpt on Polyacrylic Acid Particles as Hydrogenation Catalyst. Catalysis Letters, 2004, 95, 67-75.	2.6	37
74	Ni0.05Mn0.95O catalysts for the dry reforming of methane. Catalysis Today, 2015, 242, 111-118.	4.4	37
75	Recent developments in hydrogenation and hydroformylation in surfactant systems. Catalysis Today, 2015, 247, 55-63.	4.4	37
76	Hydrogenation of Propyne in Palladium-Containing Polyacrylic Acid Membranes and Its Characterization. Industrial & Engineering Chemistry Research, 2005, 44, 9064-9070.	3.7	36
77	Suzuki Coupling Reactions in Threeâ€Phase Microemulsions. Angewandte Chemie - International Edition, 2011, 50, 1918-1921.	13.8	36
78	Revealing the Mechanism of Multiwalled Carbon Nanotube Growth on Supported Nickel Nanoparticles by in Situ Synchrotron X-ray Diffraction, Density Functional Theory, and Molecular Dynamics Simulations. ACS Catalysis, 2019, 9, 6999-7011.	11.2	36
79	Hydroformylation in microemulsions: conversion of an internal long chain alkene into a linear aldehyde using a water soluble cobalt catalyst. Catalysis Today, 2003, 79-80, 43-49.	4.4	35
80	Topology of silica supported vanadium–titanium oxide catalysts for oxidative dehydrogenation of propane. Catalysis Science and Technology, 2012, 2, 1346.	4.1	35
81	Rhodium-Catalyzed Hydroformylation of Long-Chain Olefins in Aqueous Multiphase Systems in a Continuously Operated Miniplant. Industrial & Engineering Chemistry Research, 2015, 54, 11953-11960.	3.7	35
82	Hydroformylation in Microemulsions: Proof of Concept in a Miniplant. Industrial & Engineering Chemistry Research, 2016, 55, 8616-8626.	3.7	35
83	Mikroemulsionen als Medium für chemische Reaktionen. Nachrichten Aus Der Chemie, 1992, 40, 1344-1352.	0.0	34
84	Hydroformylation of 7-tetradecene using Rh-TPPTS in a microemulsion. Applied Catalysis A: General, 2002, 236, 173-178.	4.3	34
85	Partial hydrogenation of sunflower oil in a membrane reactor. Journal of Molecular Catalysis A, 2007, 271, 192-199.	4.8	33
86	The role of lattice oxygen in the oxidative dehydrogenation of ethane on alumina-supported vanadium oxide. Physical Chemistry Chemical Physics, 2009, 11, 6119.	2.8	32
87	Enzymatic reduction of a less water-soluble ketone in reverse micelles with nadh regeneration. Biotechnology and Bioengineering, 1999, 65, 357-362.	3.3	29
88	Kinetics of 1,5-Cyclooctadiene Hydrogenation on Pd∫α-Al2O3. Industrial & Engineering Chemistry Research, 2007, 46, 1677-1681.	3.7	29
89	New Polymerâ€Supported Catalysts for the Asymmetric Transfer Hydrogenation of Acetophenone in Water – Kinetic and Mechanistic Investigations. Advanced Synthesis and Catalysis, 2011, 353, 1335-1344.	4.3	29
90	Comparison of oxidizing agents for the oxidative coupling of methane over state-of-the-art catalysts. Applied Catalysis A: General, 2012, 417-418, 145-152.	4.3	29

#	Article	IF	CITATIONS
91	Improving the Catalytic Activity in the Rhodiumâ€Mediated Hydroformylation of Styrene by a Bis(Nâ€heterocyclic silylene) Ligand. European Journal of Inorganic Chemistry, 2017, 2017, 1284-1291.	2.0	29
92	Chemical reactions in microemulsions: kinetics of the alkylation of 2-alkylindan-1,3-diones in microemulsions and polar organic solvents. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 847-851.	1.7	28
93	Experimental investigation of fluidized-bed reactor performance for oxidative coupling of methane. Journal of Natural Gas Chemistry, 2012, 21, 534-543.	1.8	28
94	Process Design for the Separation of Three Liquid Phases for a Continuous Hydroformylation Process in a Miniplant Scale. Industrial & Engineering Chemistry Research, 2013, 52, 7259-7264.	3.7	28
95	Adsorption of non-ionic surfactant from aqueous solution onto various ultrafiltration membranes. Journal of Membrane Science, 2015, 493, 120-133.	8.2	28
96	Candida Rugosa lipase reactions in nonionic w/o-microemulsion with a technical surfactant. Enzyme and Microbial Technology, 2001, 28, 42-48.	3.2	27
97	The impact of nitrogen mobility on the activity of zirconium oxynitride catalysts for ammonia decomposition. Journal of Catalysis, 2007, 250, 19-24.	6.2	27
98	Selection of systems for catalyst recovery by micellar enhanced ultrafiltration. Chemical Engineering and Processing: Process Intensification, 2009, 48, 356-363.	3.6	27
99	Immobilization of a Modified Tethered Rhodium(III)â€ <i>p</i> â€Toluenesulfonylâ€1,2â€diphenylethylenediamine Catalyst on Soluble and Solid Polymeric Supports and Successful Application to Asymmetric Transfer Hydrogenation of Ketones. Advanced Synthesis and Catalysis, 2010, 352, 2497-2506.	4.3	27
100	Understanding the Role of Nonionic Surfactants during Catalysis in Microemulsion Systems on the Example of Rhodium-Catalyzed Hydroformylation. Industrial & Engineering Chemistry Research, 2017, 56, 9934-9941.	3.7	27
101	Pd nanoparticles confined in mesoporous N-doped carbon silica supports: a synergistic effect between catalyst and support. Catalysis Science and Technology, 2020, 10, 1385-1394.	4.1	27
102	Steam reforming of methanol over Cu/ZnO/Al2O3 modified with hydrotalcites. Catalysis Communications, 2007, 8, 1684-1690.	3.3	26
103	Catalytic isomerization of hydrophobic allylarenes in aqueous microemulsions. Journal of Molecular Catalysis A, 2011, 335, 8-13.	4.8	26
104	Li/MgO with spin sensors as catalyst for the oxidative coupling of methane. Catalysis Communications, 2012, 18, 132-136.	3.3	26
105	Enzyme Catalysis in Reverse Micelles. Advances in Biochemical Engineering/Biotechnology, 2002, 75, 185-208.	1.1	25
106	Preparation of aminated microfiltration membranes by degradable functionalization using plain PEI membranes with various morphologies. Journal of Membrane Science, 2007, 292, 145-157.	8.2	25
107	Characterisation and catalytic testing of VO /Al2O3 catalysts for microstructured reactors. Catalysis Communications, 2008, 9, 229-233.	3.3	25
108	A new method to synthesize very active and stable supported metal Pt catalysts: thermo-destabilization of microemulsions. Journal of Materials Chemistry, 2012, 22, 11605.	6.7	25

#	Article	IF	CITATIONS
109	Controlled Formation of Nickel Oxide Nanoparticles on Mesoporous Silica using Molecular Ni ₄ O ₄ Clusters as Precursors: Enhanced Catalytic Performance for Dry Reforming of Methane. ChemCatChem, 2015, 7, 1280-1284.	3.7	25
110	Photocatalytic reduction of carbon dioxide over Cu/TiO2 photocatalysts. Environmental Science and Pollution Research, 2018, 25, 34903-34911.	5.3	25
111	Confinement of Cobalt Species in Mesoporous N-Doped Carbons and the Impact on Nitroarene Hydrogenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 11171-11182.	6.7	25
112	α-methylstyrene hydrogenation in a flow-through membrane reactor. AICHE Journal, 2006, 52, 2805-2811.	3.6	24
113	Magnetic Properties of Reduced and Reoxidized Mn–Na ₂ WO ₄ /SiO ₂ : A Catalyst for Oxidative Coupling of Methane (OCM). Journal of Physical Chemistry C, 2018, 122, 22605-22614.	3.1	24
114	Urea and green tea like precursors for the preparation of g-C3N4 based carbon nanomaterials (CNMs) composites as photocatalysts for photodegradation of pollutants under UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 398, 112596.	3.9	23
115	Kinetik der Umesterung von Ethanol und Butylacetat - Ein Modellsystem für die Reaktivrektifikation. Chemie-Ingenieur-Technik, 1999, 71, 704-708.	0.8	22
116	Impact of preparation method on physico-chemical and catalytic properties of VOx/γ-Al2O3 materials. Journal of Molecular Catalysis A, 2008, 293, 45-52.	4.8	22
117	Dependence of the Heck coupling in aqueous microemulsion by supported palladium acetate on the surfactant and on the hydrophobicity of the support. Journal of Molecular Catalysis A, 2010, 323, 65-69.	4.8	22
118	Micellar Solutions and Microemulsions as Media for Catalytic Reactions. Chemie-Ingenieur-Technik, 2011, 83, 1343-1355.	0.8	22
119	Characterization and Quantification of Reduced Sites on Supported Vanadium Oxide Catalysts by Using Highâ€Frequency Electron Paramagnetic Resonance. ChemCatChem, 2012, 4, 641-652.	3.7	22
120	Protonated Imineâ€Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19950-19956.	2.0	22
121	Catalytic Hydrogenation of Dimethyl Itaconate in a Waterâ^'Cyclohexaneâ^'Triton X-100 Microemulsion in Comparison to a Biphasic System. Industrial & Engineering Chemistry Research, 2008, 47, 7586-7592.	3.7	21
122	Catalytic Activity of Mono- and Bi-Metallic Nanoparticles Synthesized via Microemulsions. Catalysts, 2014, 4, 256-275.	3.5	21
123	A novel process concept for the three step Boscalid® synthesis. RSC Advances, 2016, 6, 58279-58287.	3.6	21
124	CFD Simulation of Oxidative Coupling of Methane in Fluidized-Bed Reactors: A Detailed Analysis of Flow-Reaction Characteristics and Operating Conditions. Industrial & Engineering Chemistry Research, 2016, 55, 1149-1163.	3.7	21
125	Palladium catalyzed methoxycarbonylation of 1-dodecene in biphasic systems – Optimization of catalyst recycling. Molecular Catalysis, 2017, 439, 1-8.	2.0	21
126	Rhodium catalyzed hydroformylation of 1-octene in microemulsion: comparison with various catalytic systems. Catalysis Letters, 2006, 110, 195-201.	2.6	20

#	Article	IF	CITATIONS
127	A poreâ€flowâ€through membrane reactor for partial hydrogenation of 1,5â€cyclooctadiene. AICHE Journal, 2008, 54, 258-268.	3.6	20
128	Development of a continuous process for the hydroformylation of long-chain olefins in aqueous multiphase systems. Chemical Engineering and Processing: Process Intensification, 2013, 67, 130-135.	3.6	20
129	Superior catalyst recycling in surfactant based multiphase systems – Quo vadis catalyst complex?. Chemical Engineering and Processing: Process Intensification, 2016, 99, 155-166.	3.6	20
130	Synthesis of manganite perovskite Ca0.5Sr0.5MnO3 nanoparticles in w/o-microemulsion. Materials Research Bulletin, 2006, 41, 333-339.	5.2	19
131	Comparison of the Activity of a Rhodiumâ€Biphephos Catalyst in Thermomorphic Solvent Mixtures and Microemulsions. Chemical Engineering and Technology, 2014, 37, 1055-1064.	1.5	19
132	The hydrophilic-lipophilic balance of carboxylate and carbonate modified nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 569, 156-163.	4.7	19
133	Antioxidant as Structure Directing Agent in Nanocatalyst Preparation. Case Study: Catalytic Activity of Supported Pt Nanocatalyst in Levulinic Acid Hydrogenation. Industrial & Engineering Chemistry Research, 2019, 58, 2460-2470.	3.7	19
134	Synergistic Effects of a Rhodium Catalyst on Particle-Stabilized Pickering Emulsions for the Hydroformylation of a Long-Chain Olefin. Industrial & Engineering Chemistry Research, 2019, 58, 2524-2536.	3.7	19
135	Protonation of 1,3,5-triaminobenzenes in aqueous solutions. Thermodynamics and kinetics of the formation of stable .sigmacomplexes. Journal of the American Chemical Society, 1988, 110, 7484-7489.	13.7	18
136	Glycerolysis of Fatty Acid Methyl Esters: 1. Investigations in a Batch Reactor. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 83-90.	1.9	18
137	Impact of the reaction conditions on the photocatalytic reduction of water on mesoporous polymeric carbon nitride under sunlight irradiation. International Journal of Hydrogen Energy, 2014, 39, 10108-10120.	7.1	18
138	Characteristics of Stable Pickering Emulsions under Process Conditions. Chemie-Ingenieur-Technik, 2016, 88, 1806-1814.	0.8	18
139	Dynamic real-time optimization under uncertainty of a hydroformylation mini-plant. Computers and Chemical Engineering, 2017, 106, 836-848.	3.8	18
140	Reaction kinetics of rhodium catalysed hydrogenations in micellar solutions. Catalysis Today, 2003, 79-80, 401-408.	4.4	17
141	Catalysis of a Î ² -elimination applying membranes with incorporated molecularly imprinted polymer particles. Polymer Bulletin, 2005, 55, 287-297.	3.3	17
142	The Catalytic Activity of Zinc Oxides from Single Source Precursors with Additives for the C–H Acitivation of Lower Alkanes. Catalysis Letters, 2009, 131, 258-265.	2.6	17
143	Methane Activation over Cellulose Templated Perovskite Catalysts. ChemCatChem, 2011, 3, 1354-1358.	3.7	17
144	Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions. Nanoscale, 2013, 5, 796-805.	5.6	17

REINHARD SCHOMÃ**ë**ker

#	Article	IF	CITATIONS
145	Brazil's current and future land balances: Is there residual land for bioenergy production?. Biomass and Bioenergy, 2015, 81, 452-461.	5.7	17
146	Modeling of Semibatch Esterification Process for Poly(ethylene terephthalate) Synthesis. Macromolecular Reaction Engineering, 2007, 1, 502-512.	1.5	16
147	On the design, development and operation of an energy efficient CO2 removal for the oxidative coupling of methane in a miniplant scale. Applied Thermal Engineering, 2012, 43, 141-147.	6.0	16
148	A Singleâ€Source Precursor Approach to Selfâ€Supported Nickel–Manganeseâ€Based Catalysts with Improved Stability for Effective Lowâ€Temperature Dry Reforming of Methane. ChemPlusChem, 2016, 81, 370-377.	2.8	16
149	Catalytic Reactions in Aqueous Surfactant-Free Multiphase Emulsions. Industrial & Engineering Chemistry Research, 2016, 55, 12765-12775.	3.7	16
150	Photocatalytic CO ₂ Reduction by Mesoporous Polymeric Carbon Nitride Photocatalysts. Journal of Nanoscience and Nanotechnology, 2018, 18, 5636-5644.	0.9	16
151	Oxygen Activation in Oxidative Coupling of Methane on Calcium Oxide. Journal of Physical Chemistry C, 2019, 123, 8018-8026.	3.1	16
152	Quasi-Homogeneous Hydrogenation with Platinum and Palladium Nanoparticles Stabilized by Dendritic Core–Multishell Architectures. Langmuir, 2011, 27, 6511-6518.	3.5	15
153	Niobium: Activator and Stabilizer for a Copperâ€Based Deacon Catalyst. ChemCatChem, 2014, 6, 245-254.	3.7	15
154	Systematic Phase Separation Analysis of Surfactant-Containing Systems for Multiphase Settler Design. Industrial & Engineering Chemistry Research, 2015, 54, 3205-3217.	3.7	15
155	Impact of operating conditions for the continuous-flow degradation of diclofenac with immobilized carbon nitride photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112182.	3.9	15
156	Ultrafiltration of Reverse Micelles in the Ternary System AOT/Isooctane/Water. Langmuir, 1996, 12, 2362-2366.	3.5	14
157	The Kinetics of an Interfacial Reaction in a Microemulsion. Chemical Engineering and Technology, 1998, 21, 666-670.	1.5	14
158	Poly(vinyl alcohol) Ultrafiltration Membranes: Synthesis, Characterization, the Use for Enzyme Immobilization. Engineering in Life Sciences, 2003, 3, 446-452.	3.6	14
159	Homogeneous Stabilization of Pt Nanoparticles in Dendritic Core–Multishell Architectures: Application in Catalytic Hydrogenation Reactions and Recycling. ChemCatChem, 2010, 2, 863-870.	3.7	14
160	Oxidative Coupling of Methane: Process Design, Development and Operation in a Miniâ€Plant Scale. Chemie-Ingenieur-Technik, 2012, 84, 1989-1996.	0.8	14
161	Investigation of sol–gel supported palladium catalysts for Heck coupling reactions in o/w-microemulsions. Journal of Molecular Catalysis A, 2014, 393, 210-221.	4.8	14
162	Investigation into Consecutive Reactions of Ethane and Ethene Under the OCM Reaction Conditions over MnxOy–Na2WO4/SiO2 Catalyst. Catalysis Letters, 2018, 148, 1659-1675.	2.6	14

#	Article	IF	CITATIONS
163	Enantioselective hydrogenation of itaconic acid and its derivates with sol–gel immobilized Rh/BPPM catalysts. Journal of Molecular Catalysis A, 2013, 366, 359-367.	4.8	13
164	Applying thermo-destabilization of microemulsions as a new method for co-catalyst loading on mesoporous polymeric carbon nitride – towards large scale applications. RSC Advances, 2014, 4, 50017-50026.	3.6	13
165	XPS studies on dispersed and immobilised carbon nitrides used for dye degradation. Photochemical and Photobiological Sciences, 2019, 18, 1833-1839.	2.9	13
166	Synthesis and characterization of porous polymer membranes produced by interparticle crosslinking. Journal of Membrane Science, 2000, 171, 285-291.	8.2	12
167	Hydroformylation with rhodium phosphine-modified catalyst in a microemulsion: comparison of organic and aqueous systems for styrene, cyclohexene and 1,4-diacetoxy-2-butene. Catalysis Letters, 2005, 102, 83-89.	2.6	12
168	Disproportionation of hydrophobic dihydroarenes by recyclable rhodium and palladium catalysts in aqueous microemulsions. Journal of Molecular Catalysis A, 2011, 351, 46-51.	4.8	12
169	Rational design of tandem catalysts using a core–shell structure approach. Nanoscale Advances, 2021, 3, 3454-3459.	4.6	12
170	Synthesis and characterization of palladium containing membranes based upon polyacrylic acid. Colloid and Polymer Science, 2003, 281, 862-868.	2.1	11
171	Stabilization of Mesoporous Silica SBAâ€15 by Surface Functionalization. ChemPhysChem, 2009, 10, 2230-2233.	2.1	11
172	Kinetic studies on ammonia decomposition over zirconium oxynitride. Applied Catalysis A: General, 2011, 392, 103-110.	4.3	11
173	Catalytic transfer hydrogenation of hydrophobic substrates by water-insoluble hydrogen donors in aqueous microemulsions. Journal of Molecular Catalysis A, 2013, 366, 210-214.	4.8	11
174	Cyclotrimerization of alkynes vs. ketone formation in aqueous microemulsion. Journal of Molecular Catalysis A, 2014, 382, 93-98.	4.8	11
175	Investigation of phase behaviour of selected chemical reaction mixtures in microemulsions for technical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 49-58.	4.7	11
176	Li/MgO Catalysts Doped with Alioâ€valent Ions. Part II: Local Topology Unraveled by EPR/NMR and DFT Modeling. ChemCatChem, 2017, 9, 3597-3610.	3.7	11
177	Li/MgO Catalysts Doped with Alioâ€valent Ions. Part I: Structure, Composition, and Catalytic Properties. ChemCatChem, 2017, 9, 3583-3596.	3.7	11
178	Multiphasic aqueous hydroformylation of 1-alkenes with micelle-like polymer particles as phase transfer agents. RSC Advances, 2018, 8, 23332-23338.	3.6	11
179	Palladium-Catalyzed Methoxycarbonylation of 1-Dodecene in a Two-Phase System: The Path toward a Continuous Process. Industrial & Engineering Chemistry Research, 2018, 57, 8884-8894.	3.7	11
180	Kinetics of Hydroformylation of 1-Dodecene in Microemulsion Systems Using a Rhodium Sulfoxantphos Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 4443-4453.	3.7	11

#	Article	IF	CITATIONS
181	Apples and Apples: A Shortcut Assessment Framework for Earlyâ€Stage Carbon Capture and Utilization Technologies Based on Efficiency, Feasibility, and Risk. Energy Technology, 2021, 9, 2000691.	3.8	11
182	Ruthenium nanoparticles supported on carbon-based nanoallotropes as co-catalyst to enhance the photocatalytic hydrogen evolution activity of carbon nitride. Renewable Energy, 2021, 168, 668-675.	8.9	11
183	Continuous ultrafiltration of reverse micelles in the ternary system Igepal CA 520/cyclohexane/water. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1695-1698.	0.9	10
184	Ultrafiltration of Water/Oil Microemulsions in Biocatalysis. Chemical Engineering and Technology, 1999, 22, 753.	1.5	10
185	Selective Hydrogenation of 1,5-Cyclo-octadiene over Porous Pd/α-Al2O3 Active Membrane. Chinese Journal of Catalysis, 2007, 28, 715-719.	14.0	10
186	Fabrication of alumina ceramics from powders made by sol–gel type hydrolysis in microemulsions. Materials Chemistry and Physics, 2008, 111, 570-577.	4.0	10
187	Supported ZnO catalysts for the conversion of alkanes: About the metamorphosis of a heterogeneous catalyst. Journal of Natural Gas Chemistry, 2012, 21, 581-594.	1.8	10
188	Partition Coefficients of Itaconates in Aqueous-Micellar Solutions: Measurements and Predictions with COSMO-RS. Industrial & amp; Engineering Chemistry Research, 2012, 51, 1846-1852.	3.7	10
189	Characterization of Water/Sucrose Laurate/ <i>n</i> â€Propanol/Allylbenzene Microemulsions. Journal of Surfactants and Detergents, 2012, 15, 505-512.	2.1	10
190	Thermal Reaction Analysis of Oxidative Coupling of Methane. Chemie-Ingenieur-Technik, 2014, 86, 1906-1915.	0.8	10
191	Colloidal polymer particles as catalyst carriers and phase transfer agents in multiphasic hydroformylation reactions. Journal of Colloid and Interface Science, 2018, 513, 638-646.	9.4	10
192	Thermodynamic prediction of the solvent effect on a transesterification reaction. Chemical Engineering Science, 2018, 176, 264-269.	3.8	10
193	The quantitative impact of fluid <i>vs.</i> solid interfaces on the catalytic performance of pickering emulsions. Physical Chemistry Chemical Physics, 2021, 23, 2355-2367.	2.8	10
194	Deriving Economic Potential and GHG Emissions of Steel Mill Gas for Chemical Industry. Frontiers in Energy Research, 2021, 9, .	2.3	10
195	Assessing the Realizable Flexibility Potential of Electrochemical Processes. Industrial & Engineering Chemistry Research, 2021, 60, 13637-13660.	3.7	10
196	Towards a novel process concept for the hydroformylation of higher alkenes: Mini-plant operation strategies via model development and optimal experimental design. Chemical Engineering Science, 2014, 115, 127-138.	3.8	9
197	Verteilungsgleichgewichte von Liganden in mizellaren Lösungsmittelsystemen. Chemie-Ingenieur-Technik, 2016, 88, 119-127.	0.8	9
198	Alkaline Hydrolysis of Methyl Decanoate in Surfactant-Based Systems. Journal of Organic Chemistry, 2018, 83, 7398-7406.	3.2	9

#	Article	IF	CITATIONS
199	Microstraining in titania-, alumina- and silica-supported V2O5-catalysts. Journal of the European Ceramic Society, 2009, 29, 1093-1099.	5.7	8
200	Microemulsion Systems as Switchable Reaction Media for the Catalytic Upgrading of Longâ€Chain Alkenes. Chemie-Ingenieur-Technik, 2017, 89, 459-463.	0.8	8
201	Palladium-Catalyzed Hydroxycarbonylation of 1-Dodecene in Microemulsion Systems: Does Reaction Performance Care about Phase Behavior?. ACS Omega, 2018, 3, 13355-13364.	3.5	8
202	The dynamics of surface adsorption and foam formation of carbonate modified nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588, 124386.	4.7	8
203	Changes in Phase Behavior from the Substitution of Ethylene Oxide with Carbon Dioxide in the Head Group of Nonionic Surfactants. ChemSusChem, 2020, 13, 601-607.	6.8	8
204	Silicon oxycarbonitride ceramic containing nickel nanoparticles: from design to catalytic application. Materials Advances, 2021, 2, 1715-1730.	5.4	8
205	Reactions in Organised Surfactant Systems. , 0, , 148-179.		7
206	Adsorption and filtration behaviour of non-ionic surfactants during reverse micellar-enhanced ultrafiltration. Journal of Membrane Science, 2013, 433, 80-87.	8.2	7
207	Decarbonylation of water insoluble carboxaldehydes in aqueous microemulsions by some sol–gel entrapped catalysts. Journal of Molecular Catalysis A, 2013, 380, 90-93.	4.8	7
208	Transition-Metal-Doping of CaO as Catalyst for the OCM Reaction, a Reality Check. Frontiers in Chemistry, 2022, 10, 768426.	3.6	7
209	Kinetik einer Phenolalkylierung in Mikroemulsionen mit Exzeßphasen. Chemie-Ingenieur-Technik, 1999, 71, 877-881.	0.8	6
210	N-alkylation of aniline with ethanol over an industrial niobic acid catalyst ? influence of water formation on kinetics and selectivity. Catalysis Letters, 2005, 100, 181-187.	2.6	6
211	Catalytic Hydrogenations in Microemulsion Systems with Rh-TPPTS: Partial Hydrogenation of Sunflower Oil. Catalysis Letters, 2009, 133, 273-279.	2.6	6
212	Partition Coefficients for Continuous Micellar Reaction Processes. Chemical Engineering and Technology, 2011, 34, 1899-1908.	1.5	6
213	Catalysis in Modified Liquidâ€Liquid Multiphase Systems. Chemie-Ingenieur-Technik, 2012, 84, 1861-1872.	0.8	6
214	Mass Transfer Phenomena in Micellar Multiphase Systems Investigated for a Hydroformylation Reaction. Chemie-Ingenieur-Technik, 2013, 85, 1530-1539.	0.8	6
215	Multi-Scale Analysis of Integrated C1 (CH4 and CO2) Utilization Catalytic Processes: Impacts of Catalysts Characteristics up to Industrial-Scale Process Flowsheeting, Part I: Experimental Analysis of Catalytic Low-Pressure CO2 to Methanol Conversion. Catalysts, 2020, 10, 505.	3.5	6
216	New composite material based on Kaolinite, cement, TiO2 for efficient removal of phenol by photocatalysis. Environmental Science and Pollution Research, 2021, 28, 35991-36003.	5.3	6

REINHARD SCHOMÃ**ë**ker

#	Article	IF	CITATIONS
217	Use of Cellulose for the Production of Photocatalytic Films for Hydrogen Evolution Along the Lines of Paper Production. Energy Technology, 2022, 10, 2100525.	3.8	6
218	Drop-Size Analysis in a Two-Phase Reactive Liquidâ^'Liquid System on a Bubble-Cap Tray. Industrial & Engineering Chemistry Research, 2005, 44, 3343-3347.	3.7	5
219	Dealing with Risk in Development Projects for Chemical Products and Processes. Industrial & Engineering Chemistry Research, 2007, 46, 7758-7779.	3.7	5
220	Catalytic hydrogenation of dimethyl itaconate in non-ionic microemulsions: influence of the size of micelle. New Journal of Chemistry, 2009, 33, 1726.	2.8	5
221	Microemulsion-Aided Synthesis of Nanosized Perovskite-Type SrCoOx Catalysts. Catalysis Letters, 2011, 141, 772-778.	2.6	5
222	Techno-economic assessment of CO2-containing polyurethane rubbers. Journal of CO2 Utilization, 2020, 36, 153-168.	6.8	5
223	Rh-Catalyzed Reductive Amination of Undecanal in an Aqueous Microemulsion System Using a Non-Ionic Surfactant. Catalysts, 2021, 11, 1223.	3.5	5
224	Development of a Reactor for Standardized Quantification of the Photocatalytic Hydrogen Production. Chemie-Ingenieur-Technik, 2013, 85, 500-507.	0.8	4
225	Catalytic Activity of Ceramic Honeycombs inÂthe Exhaust Gas Oxidation of a Waste Treatment Plant. Chemical Engineering and Technology, 2019, 42, 422-431.	1.5	4
226	Multi-Scale Analysis of Integrated C1 (CH4 and CO2) Utilization Catalytic Processes: Impacts of Catalysts Characteristics up to Industrial-Scale Process Flowsheeting, Part II: Techno-Economic Analysis of Integrated C1 Utilization Process Scenarios. Catalysts, 2020, 10, 488.	3.5	4
227	Immobilization of TiO2 Semiconductor Nanoparticles onto Posidonia Oceanica Fibers for Photocatalytic Phenol Degradation. Water (Switzerland), 2021, 13, 2948.	2.7	4
228	Photocatalytic hydrogenation of acetophenone on a titanium dioxide cellulose film. RSC Advances, 2022, 12, 7055-7065.	3.6	4
229	Correlation of performance data of silica particle flotations and foaming properties of cationic and nonionic surfactants for the development of selection criteria for flotation auxiliaries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129159.	4.7	4
230	One-Pot Synthesis of Fatty Amines: Rh-Catalyzed Hydroaminomethylation of 1-Decene in an Aqueous Microemulsion System—Influence of Reaction Conditions on the Reaction Performance. Catalysts, 2022, 12, 773.	3.5	4
231	Niobsäre, ein neuer technischer Katalysator zur Ethylierung von aromatischen Aminen. Chemie-Ingenieur-Technik, 1994, 66, 1082-1084.	0.8	3
232	Glycerolysis of Fatty Acid Methyl Esters: 2. Simulation and Experiments in Continuous Reactors. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 91-96.	1.9	3
233	Contributions of phase composition and defect structure to the long term stability of Li/MgO catalysts. International Journal of Materials Research, 2012, 103, 1488-1498.	0.3	3
234	Stereoselective Condensation of <scp>L</scp> â€ <scp>L</scp> actic Acid in Presence of Heterogeneous Catalysts. Macromolecular Symposia, 2013, 333, 216-226.	0.7	3

Reinhard SchomÃøker

#	Article	IF	CITATIONS
235	Sol-gel immobilized catalyst systems for tandem transformations with trans-stilbene as an intermediate. Catalysis Communications, 2014, 53, 1-4.	3.3	3
236	Comparison of Commercial Nanosized Titania Particles for the Degradation of Diclofenac. Journal of Nanoscience and Nanotechnology, 2018, 18, 7952-7959.	0.9	3
237	Preparation of NiO nanoparticles in mesoporous silica via eutectic freezing and freeze-drying of aqueous precursor salts. Microporous and Mesoporous Materials, 2020, 304, 109136.	4.4	3
238	Kinetic Investigation of Polyurethane Rubber Formation from CO 2 ontaining Polyols. Chemie-Ingenieur-Technik, 2020, 92, 199-208.	0.8	3
239	Insights into the light-driven hydrogen evolution reaction of mesoporous graphitic carbon nitride decorated with Pt or Ru nanoparticles. Dalton Transactions, 2022, 51, 731-740.	3.3	3
240	The closer the better? Theoretical assessment of the impact of catalytic site separation for bifunctional core–shell catalyst particles. Chemical Engineering Journal, 2022, 446, 136891.	12.7	3
241	Darstellung von Reaktivmembranen auf der Basis von Poly(vinylalkohol). Chemie-Ingenieur-Technik, 2000, 72, 1209-1213.	0.8	2
242	Kinetic Studies of CdS Formation for a Better Understanding of Chemical Buffer Layer Deposition. Materials Research Society Symposia Proceedings, 2009, 1165, 1.	0.1	2
243	A Novel Process Design for the Hydroformylation of Higher Alkenes Computer Aided Chemical Engineering, 2011, 29, 226-230.	0.5	2
244	Direct condensation of lactic acid in the presence or absence of supported zirconium sulfate. Journal of Applied Polymer Science, 2015, 132, .	2.6	2
245	Autothermal Oxidative Coupling of Methane: Steadyâ€state Multiplicity over Mnâ€Na ₂ WO ₄ /SiO ₂ at Miniâ€Plant Scale. Chemie-Ingenieur-Technik, 0, , .	0.8	2
246	Influence of Thiourea Dimers in the Chemical Bath Deposition Process of Metal Sulfides. Journal of the Electrochemical Society, 2010, 157, D493.	2.9	1
247	Ultrafiltration of Surfactant Micelles: Cross-flow Experiments and Flux Modelling. Computer Aided Chemical Engineering, 2010, 28, 787-792.	0.5	1
248	Microemulsion Systems with Rhodium Tris(3â€sulfophenyl)phosphine Trisodium Salt Complex for Product Isolation and Catalyst Recycling in the Hydrogenation of Dimethyl Itaconate. Journal of Surfactants and Detergents, 2011, 14, 103-111.	2.1	1
249	A continuous hydroformylation process in a miniplant scale. Computer Aided Chemical Engineering, 2012, 31, 710-714.	0.5	1
250	lonic Liquids as Surfactants in Aqueous Multiphase Systems for the Pd atalyzed Hydrocarboxylation. Chemie-Ingenieur-Technik, 2021, 93, 201-207.	0.8	1
251	Dynamic Real-time Optimization Under Uncertainty of a Hydroformylation Mini-plant. Computer Aided Chemical Engineering, 2016, , 2337-2342.	0.5	1
252	Technische Chemie 1996. Nachrichten Aus Der Chemie, 1997, 45, 207-211.	0.0	0

REINHARD SCHOMÃ**ë**ker

#	Article	IF	CITATIONS
253	Modeling of a Catalyzed Reaction Using Lipase Immobilized in a Poly(vinyl alcohol) Membrane. Engineering in Life Sciences, 2005, 5, 29-37.	3.6	О
254	Influence of Reaction Pressure on Semibatch Esterification Process of Poly(ethylene terephthalate) Synthesis. Macromolecular Symposia, 2007, 259, 65-75.	0.7	0
255	Influence of Non–ionic Surfactants on Reverse Micellar–enhanced Ultrafiltration. Procedia Engineering, 2012, 44, 1692-1694.	1.2	0
256	Partitioning of Substrate within Aqueous Micelle Systems by Using Dead-End and Cross Flow Membrane Filtrations. Procedia Engineering, 2012, 33, 70-77.	1.2	0
257	Reaktoren für Fluid-Feststoff-Reaktionen: Schleifenreaktor (Chemical Looping Reactor). Springer Reference Naturwissenschaften, 2019, , 1-26.	0.2	Ο
258	Reaktoren für Fluid-Feststoff-Reaktionen: Schleifenreaktor (Chemical Looping Reactor). Springer Reference Naturwissenschaften, 2020, , 697-722.	0.2	0
259	Recognition of Oxidative Coupling of Methane Reactor Performance Patterns. Chemical Engineering and Technology, 0, , .	1.5	0
260	Formamidinium Halide Perovskite and Carbon Nitride Thin Films Enhance Photoreactivity under Visible Light Excitation. Journal of Physical Chemistry A, 0, , .	2.5	0