
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8668079/publications.pdf Version: 2024-02-01

SHEV-SHILII

#	Article	IF	CITATIONS
1	A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption. IEEE Transactions on Microwave Theory and Techniques, 2005, 53, 813-824.	4.6	143
2	Analysis and Design of a CMOS UWB LNA With Dual-\$RLC\$-Branch Wideband Input Matching Network. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 287-296.	4.6	142
3	A Self-Powered CMOS Reconfigurable Multi-Sensor SoC for Biomedical Applications. IEEE Journal of Solid-State Circuits, 2014, 49, 851-866.	5.4	108
4	Analysis and Design of a 1.6–28-GHz Compact Wideband LNA in 90-nm CMOS Using a \$ pi \$-Match Input Network. IEEE Transactions on Microwave Theory and Techniques, 2010, 58, 2092-2104.	4.6	107
5	A Passive Inertial Switch Using MWCNT–Hydrogel Composite With Wireless Interrogation Capability. Journal of Microelectromechanical Systems, 2013, 22, 646-654.	2.5	81
6	Micromachined CMOS LNA and VCO by CMOS-compatible ICP deep trench technology. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 580-588.	4.6	79
7	Design and Analysis of a 21–29-GHz Ultra-Wideband Receiver Front-End in 0.18-\$mu\$m CMOS Technology. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 2590-2604.	4.6	65
8	3–10-GHz Ultra-Wideband Low-Noise Amplifier Utilizing Miller Effect and Inductive Shunt–Shunt Feedback Technique. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 1832-1843.	4.6	59
9	A Portable Micro Gas Chromatography System for Lung Cancer Associated Volatile Organic Compound Detection. IEEE Journal of Solid-State Circuits, 2016, 51, 259-272.	5.4	58
10	A Compact Wideband CMOS Low-Noise Amplifier Using Shunt Resistive-Feedback and Series Inductive-Peaking Techniques. IEEE Microwave and Wireless Components Letters, 2007, 17, 616-618.	3.2	57
11	A 0.5-V Biomedical System-on-a-Chip for Intrabody Communication System. IEEE Transactions on Industrial Electronics, 2011, 58, 690-699.	7.9	46
12	Ga/sub 0.51/In/sub 0.49/P/In/sub 0.15/Ga/sub 0.85/As/GaAs pseudomorphic doped-channel FET with high-current density and high-breakdown voltage. IEEE Electron Device Letters, 1997, 18, 150-153.	3.9	44
13	A Wireless Bio-MEMS Sensor for C-Reactive Protein Detection Based on Nanomechanics. IEEE Transactions on Biomedical Engineering, 2009, 56, 462-470.	4.2	43
14	Analysis and Design of CMOS Distributed Amplifier Using Inductively Peaking Cascaded Gain Cell for UWB Systems. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2513-2524.	4.6	41
15	Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC. IEEE Transactions on Biomedical Circuits and Systems, 2010, 4, 350-359.	4.0	39
16	A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology. Lab on A Chip, 2013, 13, 4451.	6.0	38
17	Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops. IEEE Journal of Solid-State Circuits, 2002, 37, 694-701.	5.4	36
18	A CMOS Cantilever-Based Label-Free DNA SoC With Improved Sensitivity for Hepatitis B Virus Detection. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 820-831.	4.0	30

#	Article	IF	CITATIONS
19	High-linearity high-current-drivability ga0.51in0.49p/gaas misfet using ga0.51in0.49p airbridge gate structure grown by gsmb. IEEE Electron Device Letters, 1995, 16, 518-520.	3.9	29
20	High-performance Ga/sub 0.51/In/sub 0.49/P/GaAs airbridge gate MISFET's grown by gas-source MBE. IEEE Transactions on Electron Devices, 1997, 44, 921-929.	3.0	29
21	A 0.45-V Low-Power OOK/FSK RF Receiver in 0.18 <inline-formula> <tex-math notation="LaTeX">\$muext{m}\$ </tex-math </inline-formula> CMOS Technology for Implantable Medical Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 1123-1130.	5.4	29
22	A 5–6 GHz 1-V CMOS Direct-Conversion Receiver With an Integrated Quadrature Coupler. IEEE Journal of Solid-State Circuits, 2007, 42, 1963-1975.	5.4	28
23	An ultralow-loss and broadband micromachined RF inductor for RFIC input-matching applications. IEEE Transactions on Electron Devices, 2006, 53, 568-570.	3.0	26
24	A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV). Sensors and Actuators B: Chemical, 2013, 181, 867-873.	7.8	26
25	A micromachined CMOS distributed amplifier by CMOS compatible ICP deep-trench technology. IEEE Electron Device Letters, 2006, 27, 291-293.	3.9	25
26	An analysis of the anomalous dip in scattering parameter S/sub 22/ of InGaP-GaAs heterojunction bipolar transistors (HBTs). IEEE Transactions on Electron Devices, 2002, 49, 1831-1833.	3.0	24
27	A Millimeter-Wave CMOS Triple-Band Phase-Locked Loop With A Multimode LC-Based ILFD. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 1327-1338.	4.6	23
28	A Programmable Edge-Combining DLL With a Current-Splitting Charge Pump for Spur Suppression. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, 57, 946-950.	3.0	22
29	A Controlled-Release Drug Delivery System on a Chip Using Electrolysis. IEEE Transactions on Industrial Electronics, 2012, 59, 1578-1587.	7.9	21
30	The effect of gate recess profile on device performance of Ga/sub 0.51/In/sub 0.49/P/In/sub 0.2/Ga/sub 0.8/As doped-channel FET's. IEEE Transactions on Electron Devices, 1999, 46, 48-54.	3.0	20
31	A 2.17 dB NF, 5 GHz band monolithic CMOS LNA with 10 mW DC power consumption. , 0, , .		20
32	A low-power low-phase-noise LC VCO with MEMS Cu inductors. IEEE Microwave and Wireless Components Letters, 2005, 15, 434-436.	3.2	20
33	A 30-GHz Wideband Low-Power CMOS Injection-Locked Frequency Divider for 60-GHz Wireless-LAN. IEEE Microwave and Wireless Components Letters, 2008, 18, 145-147.	3.2	20
34	A Waveform-Dependent Phase-Noise Analysis for Edge-Combining DLL Frequency Multipliers. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 1086-1096.	4.6	20
35	6.3 mW 94 GHz CMOS Down-Conversion Mixer With 11.6 dB Gain and 54 dB LO-RF Isolation. IEEE Microwave and Wireless Components Letters, 2016, 26, 604-606.	3.2	19
36	A 0.6 V, 4.32 mW, 68 GHz Low Phase-Noise VCO With Intrinsic-Tuned Technique in 0.13 \$mu\$m CMOS. IEEE Microwave and Wireless Components Letters, 2008, 18, 467-469.	3.2	18

#	Article	IF	CITATIONS
37	A monolithic 5.9-GHz CMOS I/Q direct-down converter utilizing a quadrature coupler and transformer-coupled subharmonic mixers. IEEE Microwave and Wireless Components Letters, 2006, 16, 197-199.	3.2	17
38	A Quantization Noise Pushing Technique for \$DeltaSigma\$ Fractional-\$N\$ Frequency Synthesizers. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 817-825.	4.6	17
39	A 1.5-mW, 2.4 GHz Quasi-Circulator With High Transmitter-to-Receiver Isolation in CMOS Technology. IEEE Microwave and Wireless Components Letters, 2014, 24, 872-874.	3.2	17
40	A Low-Power CMOS Microfluidic Pump Based on Travelling-Wave Electroosmosis for Diluted Serum Pumping. Scientific Reports, 2019, 9, 14794.	3.3	17
41	A 0.5 V 3.1 mW Fully Monolithic OOK Receiver for Wireless Local Area Sensor Network. , 2005, , .		16
42	A release-on-demand wireless CMOS drug delivery SoC based on electrothermal activation technique. , 2009, , .		16
43	A 2.4/3.5/4.9/5.2/5.7-GHz concurrent multiband low noise amplifier using InGaP/GaAs HBT technology. IEEE Microwave and Wireless Components Letters, 2004, 14, 463-465.	3.2	15
44	CMOS wideband LNA design using integrated passive device. , 2009, , .		15
45	0.5-V 5.6-GHz CMOS Receiver Subsystem. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 329-335.	4.6	15
46	A 5-GHz-Band CMOS Receiver With Low LO Self-Mixing Front End. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56, 705-713.	5.4	15
47	High-current-gain small-offset-voltage In/sub 0.49/Ga/sub 0.51/P/GaAs tunneling emitter bipolar transistors grown by gas source molecular beam epitaxy. IEEE Electron Device Letters, 1992, 13, 468-470.	3.9	14
48	A dual-mode truly modular programmable fractional divider based on a 1/1.5 divider cell. IEEE Microwave and Wireless Components Letters, 2005, 15, 754-756.	3.2	14
49	A high quality factor and low power loss micromachined RF bifilar transformer for UWB RFIC applications. IEEE Electron Device Letters, 2006, 27, 684-687.	3.9	14
50	Ultralow-Loss and Broadband Micromachined Transmission Line Inductors for 30–60 GHz CMOS RFIC Applications. IEEE Transactions on Electron Devices, 2007, 54, 2512-2519.	3.0	14
51	An analysis of small-signal substrate resistance effect in deep-submicrometer RF MOSFETs. IEEE Transactions on Microwave Theory and Techniques, 2003, 51, 1534-1539.	4.6	13
52	Pain control on demand based on pulsed radio-frequency stimulation of the dorsal root ganglion using a batteryless implantable CMOS SoC. , 2010, , .		13
53	A 5.7 GHz interpolative VCO using InGaP/GaAs HBT technology. IEEE Microwave and Wireless Components Letters, 2002, 12, 37-38.	3.2	12
54	An analysis of small-signal gate-drain resistance effect on RF power MOSFETs. IEEE Transactions on Electron Devices, 2003, 50, 525-528.	3.0	12

#	Article	IF	CITATIONS
55	A linear regression model with dynamic pulse transit time features for noninvasive blood pressure prediction. , 2016, , .		12
56	A 90-nm CMOS V-Band Low-Power Image-Reject Receiver Front-End With High-Speed Auto-Wake-Up and Gain Controls. IEEE Transactions on Microwave Theory and Techniques, 2016, , 1-9.	4.6	12
57	DC and RF characteristics of E-mode Ga/sub 0.51/In/sub 0.49/P-In/sub 0.15/Ga/sub 0.85/As pseudomorphic HEMTs. IEEE Electron Device Letters, 2003, 24, 132-134.	3.9	11
58	The determination of S-parameters from the poles of voltage-gain transfer function for RF IC design. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2005, 52, 191-199.	0.1	11
59	A Low Phase-Noise 9-GHz CMOS Quadrature-VCO using Novel Source-Follower Coupling Technique. IEEE MTT-S International Microwave Symposium Digest IEEE MTT-S International Microwave Symposium, 2007, , .	0.0	11
60	A SiGe low noise amplifier for 2.4/5.2/5.7 GHz WLAN applications. , 0, , .		10
61	Reconfigurable SiGe Low-Noise Amplifiers With Variable Miller Capacitance. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2006, 53, 2567-2577.	0.1	10
62	Micromachined 22â€GHz PI filter by CMOS compatible ICP deep trench technology. Electronics Letters, 2007, 43, 398.	1.0	10
63	A mm-wave CMOS multimode frequency divider. , 2009, , .		10
64	A hydrogel-based implantable wireless CMOS glucose sensor SoC. , 2012, , .		10
65	High-breakdown-voltage Ga/sub 0.51/In/sub 0.49/P channel MESFET's grown by GSMBE. IEEE Electron Device Letters, 1996, 17, 452-454.	3.9	9
66	Single-voltage-supply operation of Ga/sub 0.51/In/sub 0.49/P/In/sub 0.15/Ga/sub 0.85/As insulated-gate FETs for power application. IEEE Electron Device Letters, 1999, 20, 21-23.	3.9	9
67	An analysis of the kink phenomenon of scattering parameterS22 in RF power mosfets for system-on-chip (SOC) applications. Microwave and Optical Technology Letters, 2003, 36, 371-376.	1.4	9
68	A High-Performance Micromachined RF Monolithic Transformer With Optimized Pattern Ground Shields (OPGS) for UWB RFIC Applications. IEEE Transactions on Electron Devices, 2007, 54, 609-613.	3.0	9
69	Low Noise-Figure \${m P}^{+}\$ AA Mesh Inductors for CMOS UWB RFIC Applications. IEEE Transactions on Electron Devices, 2008, 55, 3542-3548.	3.0	9
70	A Single-VCO Fractional-\$N\$ Frequency Synthesizer for Digital TV Tuners. IEEE Transactions on Industrial Electronics, 2010, 57, 3207-3215.	7.9	9
71	A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology. Sensors, 2012, 12, 11592-11600.	3.8	9
72	A fully integrated hepatitis B virus DNA detection SoC based on monolithic polysilicon nanowire CMOS process. , 2012, , .		9

#	Article	IF	CITATIONS
73	A Remotely-Controlled Locomotive IC Driven by Electrolytic Bubbles and Wireless Powering. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8, 787-798.	4.0	9
74	An ultra low phase noise W-band GaAs-based PHEMT MMIC CPW VCO. , 2003, , .		8
75	An Implantable Release-on-Demand CMOS Drug Delivery SoC Using Electrothermal Activation Technique. ACM Journal on Emerging Technologies in Computing Systems, 2012, 8, 1-22.	2.3	8
76	A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring. Sensors, 2017, 17, 715.	3.8	8
77	Non-Invasive Drosophila ECG Recording by Using Eutectic Gallium-Indium Alloy Electrode: A Feasible Tool for Future Research on the Molecular Mechanisms Involved in Cardiac Arrhythmia. PLoS ONE, 2014, 9, e104543.	2.5	8
78	Ga0.51In0.49P/InxGa1â^'xAs/GaAs lattice-matched and strained doped-channel field-effect transistors grown by gas source molecular beam epitaxy. Journal of Applied Physics, 1999, 85, 2197-2201.	2.5	7
79	Temperature-dependence of noise figure of monolithic RF transformers on a thin (20 /spl mu/m) silicon substrate. IEEE Electron Device Letters, 2005, 26, 208-211.	3.9	7
80	A 2.1 to 6 GHz Tunable-band LNA With Adaptive Frequency Responses by Transistor Size Scaling. IEEE Microwave and Wireless Components Letters, 2010, 20, 346-348.	3.2	7
81	Analysis and design of on-sensor ECG processors for realtime detection of VF, VT, and PVC. , 2010, , .		7
82	A 4.9-dB NF 53.5–62-GHz micro-machined CMOS wideband LNA with small group-delay-variation. , 2010, , .		7
83	A Smart CMOS Assay SoC for Rapid Blood Screening Test of Risk Prediction. IEEE Transactions on Biomedical Circuits and Systems, 2016, 9, 1-1.	4.0	7
84	Analysis and design of CMOS broadband amplifier with dual feedback loops. , 0, , .		6
85	An Ultra Low Phase Noise W-Band GaAs-Based PHEMT MMIC CPW VCO. , 2003, , .		6
86	Physiology-based diagnosis algorithm for arteriovenous fistula stenosis detection. , 2014, 2014, 4619-22.		6
87	A process for the formation of submicron V-gate by micromachined V-grooves using GaInP/GaAs selective etching technique. IEEE Electron Device Letters, 2001, 22, 420-422.	3.9	5
88	Monolithic InGaP-GaAs HBT receiver front-end with 6â€mW DC power consumption for 5â€GHz band WLAN applications. Electronics Letters, 2004, 40, 1542.	1.0	5
89	A CMOS transmitter front-end with digital power control for WiMAX 802.16e applications. , 0, , .		5
90	An Analysis of Perfect-Magnetic-Coupling Ultra-Low-Loss Micromachined SMIS RF Transformers for RFIC Applications. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 4256-4267.	4.6	5

#	Article	IF	CITATIONS
91	An analysis of perfect-magnetic-coupling ultra-low-loss micromachined SMIS RF transformers for RFIC applications. , 0, , .		5
92	Characterization and Modeling of Pattern Ground Shield and Silicon-Substrate Effects on Radio-Frequency Monolithic Bifilar Transformers for Ultra-Wide Band Radio-Frequency Integrated Circuit Applications. Japanese Journal of Applied Physics, 2007, 46, 65-70.	1,5	5
93	A Single-VCO Fractional-N Frequency Synthesizer for Digital TV Tuners. IEEE MTT-S International Microwave Symposium Digest IEEE MTT-S International Microwave Symposium, 2007, , .	0.0	5
94	Analysis and Design of On-sensor ECG Processors for Realtime Detection of Cardiac Anomalies Including VF, VT, and PVC. Journal of Signal Processing Systems, 2011, 65, 275-285.	2.1	5
95	Gold Plated Carbon Nanotube Bundle Antenna for Millimeter-Wave Applications. IEEE Electron Device Letters, 2014, 35, 378-380.	3.9	5
96	21.6 A smart CMOS assay SoC for rapid blood screening test of risk prediction. , 2015, , .		5
97	Tongue Pressure Sensing Array Integrated with a System-on-Chip Embedded in a Mandibular Advancement Splint. Micromachines, 2018, 9, 352.	2.9	5
98	Characterization and modeling of small-signal substrate resistance effect in RF CMOS. , 0, , .		4
99	A SiGe micromixer for 2.4/5.2/5.7-GHz multiband WLAN applications. Microwave and Optical Technology Letters, 2004, 41, 343-346.	1.4	4
100	Temperature and Substrate Effects in Monolithic RF Inductors on Silicon With 6- <tex>\$muhboxm\$</tex> -Thick Top Metal for RFIC Applications. IEEE Transactions on Semiconductor Manufacturing, 2006, 19, 316-330.	1.7	4
101	Chip Implementation with a Combined Wireless Temperature Sensor and Reference Devices Based on the DZTC Principle. Sensors, 2011, 11, 10308-10325.	3.8	4
102	18.7 A remotely controlled locomotive IC driven by electrolytic bubbles and wireless powering. , 2014, , ,		4
103	A printable conductive polymer CO2 sensor with high selectivity to humidity. , 2017, , .		4
104	A Wireless Monitoring System Using a Tunneling Sensor Array in a Smart Oral Appliance for Sleep Apnea Treatment. Sensors, 2017, 17, 2358.	3.8	4
105	Wideband impedance matched GaInP/GaAs HBT Gilbert micromixer with 12 dB gain. , 0, , .		3
106	An implantable integrated SIGE FM transmitter for HRV biotelemetry. , 0, , .		3
107	A GaInP/GaAs HBT micromixer for 2.4/5.2/5.7-GHz multiband WLAN applications. Microwave and Optical Technology Letters, 2004, 43, 87-89.	1.4	3
108	Integration of CNT with TIA into gas sensors. , 2006, , .		3

#	Article	IF	CITATIONS
109	A Feed-Forward Automatic-Gain Control Amlifier for Biomeducal Appications. , 2007, , .		3
110	CMOS RF circuits for 5-GHz BWA. , 2007, , .		3
111	A micromachined V-band CMOS bandpass filter with 2-dB insertion-loss. , 2009, , .		3
112	Design and implementation of intrabody communication hub/alarm unit in IBC platform for fall prevention system. Microwave and Optical Technology Letters, 2014, 56, 2345-2351.	1.4	3
113	A capacitive immunosensor using on-chip electrolytic pumping and magnetic washing techniques for point-of-care applications. , 2014, , .		3
114	21.5 A portable micro gas chromatography system for volatile compounds detection with 15ppb of sensitivity. , 2015, , .		3
115	An 1.1 V 0.1–1.6 GHz tunable-bandwidth elliptic filter with 6 dB linearity improvement by precise zero location control in 40 nm CMOS technology for 5G applications. , 2017, , .		3
116	A Low-Power PEDOT: PSS/EB-PANI for CO ₂ Sensing Material Integrated With a Self-Powered Sensing Platform. IEEE Sensors Journal, 2020, 20, 55-61.	4.7	3
117	Optimization of CMOS-integrated LC oscillators using the genetic algorithm. Microwave and Optical Technology Letters, 2004, 42, 120-124.	1.4	2
118	A 5.2-GHz low-power low-noise amplifier using inGaP-GaAs HBT technology. Microwave and Optical Technology Letters, 2005, 45, 425-427.	1.4	2
119	An analysis of base bias current effect on SiGe HBTs. IEEE Transactions on Electron Devices, 2005, 52, 132-136.	3.0	2
120	A Low Power Fully Integrated Analog Baseband Circuit with Variable Bandwidth for 802.11 a/b/g WLAN. , 0, , .		2
121	A CMOS ÂįÂį Fractional-N Frequency Synthesizer with Quantization Noise Pushing Technique. , 2007, , .		2
122	A Miniature Micro-Machined Millimeter-Wave Bandpass Filter By Complementary Metal–Oxide–Semiconductor Compatible Inductively-Coupled-Plasma Deep-Trench Technology. Japanese Journal of Applied Physics, 2008, 47, 68-73.	1.5	2
123	A 5.79-dB NF, 30-GHz-band monolithic LNA with 10 mW power consumption in standard 0.18-μm CMOS technology. Microwave and Optical Technology Letters, 2009, 51, 933-937.	1.4	2
124	Authors' Reply [to comments on "A 2.17-dB NF 5-GHz-Band Monolithic CMOS LNA With 10-mW DC Power Consumption"]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 2472-2473.	4.6	2
125	A Novel Coplanar-Waveguide Band-Pass Filter Utilizing the Inductor–Capacitor Structure in 0.18 \$mu\$m Complementary Metal–Oxide–Semiconductor Technology for Millimeter-Wave Applications. Japanese Journal of Applied Physics, 2012, 51, 034201.	1.5	2
126	Low-phase-noise 0.63-V, 1.7-mW, 11.55-GHz quadrature voltage controlled oscillator with intrinsic-tuned technique in 0.18-1¼m complimentary metal oxide semi-conductor. IET Microwaves, Antennas and Propagation, 2012, 6, 1437-1442.	1.4	2

#	Article	lF	CITATIONS
127	A 0.8–6 GHz Wideband Receiver Front-End for Software-Defined Radio. Active and Passive Electronic Components, 2013, 2013, 1-6.	0.3	2
128	A cuffless wearable system for real-time cutaneous pressure monitoring with cloud computing assistance. , 2018, , .		2
129	A novel interpretation of transducer power gain by optical analogy. Microwave and Optical Technology Letters, 2001, 31, 124-126.	1.4	1
130	DC-2.1 GHz CMOS multiple feedback transimpedance amplifiers with high dynamic range and linearity. Microwave and Optical Technology Letters, 2003, 36, 60-61.	1.4	1
131	Ga0.51In0.49P/InxGa1?xAs/GaAs doped-channel FETs (DCFETs) and their applications on monolithic microwave integrated circuits (MMICs). Microwave and Optical Technology Letters, 2003, 39, 56-62.	1.4	1
132	A monolithic 1.57/5.25-GHz concurrent dual-band low-noise amplifier using InGaP/GaAs HBT technology. Microwave and Optical Technology Letters, 2004, 42, 58-60.	1.4	1
133	Small-signal intrinsic base resistance effect on InP-InGaAs, InGaP-GaAs and SiGe HBTs. , 2005, , .		1
134	Variable Inductance Planar Spiral Inductors and CMOS Wideband Amplifiers with Inductive Peaking. , 0,		1
135	A Low-Phase-Noise Area-Efficient 3-D LC VCO in Standard 0.18-um CMOS Technology. , 0, , .		1
136	Ultra-Low-Loss and Broadband Micromachined Inductors and Transformers for 30-100 GHz CMOS RFIC Applications by CMOS-Compatible ICP Deep Trench Technology. , 2007, , .		1
137	Design and Microfabrication of Innovated FBAW Filters Based on an OOK Receiver Using 0.18um CMOS Technology. , 2007, , .		1
138	A fully integrated concurrent dual-band low-noise amplifier using InGaP/GaAs HBT technology. Microwave and Optical Technology Letters, 2007, 49, 2763-2765.	1.4	1
139	The RF characteristics of micromachined coplanar waveguide in 0.13 μm CMOS technology by CMOS compatible ICP dry etching. Microwave and Optical Technology Letters, 2009, 51, 2665-2668.	1.4	1
140	A 2–6GHz broadband CMOS low-noise amplifier with current reuse topology utilizing a noise-shaping technique. , 2011, , .		1
141	Low-cost and ultra-sensitive poly-Si nanowire biosensor for Hepatitis B Virus (HBV) DNA detection. , 2012, , .		1
142	A 3.1â€dB NF, 21.31 dB gain micromachined 3–10 GHz distributed amplifier for UWB systems in 0.18â€Ĥ⁄4m technology. Microwave and Optical Technology Letters, 2012, 54, 1163-1167.	CMOS	1
143	A low-power millimeter wave VCO by using frequency doubling technique. , 2016, , .		1
144	A solar powered single-inductor dual-output (SIDO) DC-DC boost for power management unit system with high light-load efficiency. , 2017, , .		1

#	Article	IF	CITATIONS
145	A 473 μW wireless 16-channel neural recording SoC with RF energy harvester. , 2018, , .		1
146	Trigeminal Neuralgia Alleviation on Demand with an CMOS SoC Using Current-mode Pulsed Radio-Frequency Stimulation. , 2019, , .		1
147	Field-effect pump: liquid dielectrophoresis along a virtual microchannel with source-gate-drain electric fields. Lab on A Chip, 2021, 21, 2372-2382.	6.0	1
148	More on the Impulse Sensitivity Functions of CMOS Differential LC Oscillators. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011, E94-A, 1671-1681.	0.3	1
149	High-linearity high current drivability GaInP/GaAs MISFET using GaInP airbridge gate structure grown by GSMBE. , 0, , .		Ο
150	The effect of extrinsic capacitances on the microwave performance of Ga/sub 0.51/In/sub 0.49/P/GaAs MISFETs (0 nm≤≤0 nm) grown by GSMBE. , 0, , .		0
151	High-power high-speed Ga/sub 0.51/In/sub 0.49/P/In/sub x/Ga/sub 1-x/As doped-channel FET's. , 0, , .		Ο
152	Fabrication and simulation of Ga/sub 0.51/In/sub 0.49/P/In/sub x/Ga/sub 1-x/As doped-channel FETs and MMIC amplifiers grown by GSMBE. , 0, , .		0
153	S-band MMIC amplifier using Ga0.51In0.49P/GaAs MISFETS as active devices. Microwave and Optical Technology Letters, 1999, 20, 188-190.	1.4	0
154	Quality factor improvement of on-chip inductors for HIPERLAN RFIC by micromachining. , 0, , .		0
155	Characterization and modeling of small-signal substrate resistance effect in RF CMOS. , 0, , .		Ο
156	A simple method for the determination of noise coefficientsP,R, andC by two port noise parameters. Microwave and Optical Technology Letters, 2002, 35, 129-132.	1.4	0
157	Theoretical analysis of the anomalous dips of scattering parameterS22 in deep sub-micrometer MOSFETs. Microwave and Optical Technology Letters, 2003, 36, 193-200.	1.4	Ο
158	Single-voltage-supply operation of Ga0.51In0.49P/AlGaAS/IN0.15Ga0.85As PHEMTS with high-power density. Microwave and Optical Technology Letters, 2003, 39, 196-199.	1.4	0
159	Characterization and modeling of 100 nm RF generic CMOS and 500 nm RF power CMOS. , 0, , .		0
160	Characterization and modeling of the anomalous dip in scattering parameter S/sub 11/ of InGaP/GaAs HBTs. , 0, , .		0
161	Characterization and modeling of size effect on the performances of 0.10 \hat{l} /4 m RF MOSFETs for SOC applications. , 0, , .		0
162	Characterization and modeling of size effect on the performances of 0.10 $\hat{l}^4\!/m$ RF MOSFETs for SOC applications. , 0, , .		0

#	Article	IF	CITATIONS
163	DC, and RF scattering parameters, noise and power characteristics of enhancement-mode In/sub 0.51/Ga/sub 0.49/P/In/sub 0.15/Ga/sub 0.85/As/GaAs power pHEMTs. , 0, , .		0
164	Temperature-dependence of noise figure of monolithic RF transformers on a thin (20 $\hat{l}^1\!/\!4m$) silicon substrate. , 0, , .		0
165	An analysis of the bias dependence of scattering parameters S/sub 11/ and S/sub 22/ of SiGe heterojunction bipolar transistors (HBTs). , 0, , .		Ο
166	High-quality-factor (33) and high-resonant-frequency (35 GHz) spiral inductors fabricated in 0.25-?M mixed-signal/RF-CMOS technology. Microwave and Optical Technology Letters, 2004, 41, 279-285.	1.4	0
167	A miniaturized monolithic low noise amplifier for 2.4/5.2/5.7 GHz WLAN applications using InGaP/GaAs HBT technology. , 0, , .		Ο
168	In vivo wireless biodiagnosis system for long-term bioactivity monitoring network. , 2004, 5394, 288.		0
169	High Performance GalnP/GaAs HBT Radio Frequency Integrated Circuits at 5 GHz. , 0, , .		Ο
170	High-performance fully integrated 4 GHz CMOS LC VCO in standard 0.18-μm CMOS technology. , 0, , .		0
171	Wideband Modeling of Temperature and Substrate Effects in RF Inductors on Silicon for 3.1-10.6 GHz UWB System Applications. , 0, , .		0
172	An Analysis of Base Bias Current and Intrinsic Base Resistance Effects on InP–InGaAs, InGaP–GaAs, and SiGe Heterojunction Bipolar Transistors. Japanese Journal of Applied Physics, 2006, 45, 3949-3954.	1.5	0
173	An ultra-low-loss micromachined RF monolithic transformer with partial pattern ground shields (PPGS) for UWB RFIC applications. , 2006, , .		Ο
174	A micro-machined cantilever PSA sensor with digital wireless interface. , 2006, , .		0
175	A Fully Integrated Concurrent Dual-Band Low Noise Amplifier with Suspended Inductors in SiGe 0.35 μm BiCMOS Technology. , 2007, , .		0
176	High-performance single-turn interlaced-stacked transformers for Ka-band CMOS RFIC applications. Microwave and Optical Technology Letters, 2007, 49, 936-942.	1.4	0
177	An analysis of substrate effects on transmission-lines for millimeter-wave CMOS RFIC applications. Microwave and Optical Technology Letters, 2008, 50, 319-324.	1.4	0
178	Micromachined CMOS E-band bandpass coplanar filters. Microwave and Optical Technology Letters, 2008, 50, 3123-3125.	1.4	0
179	Micromachined 50 GHz/60 GHz Phi filters by CMOS compatible ICP deep trench technology. Microwave and Optical Technology Letters, 2008, 50, 3142-3146.	1.4	Ο
180	A miniature micro-machined millimeter-wave bandpass filter by CMOS compatible ICP deep-trench technology. , 2008, , .		0

#	Article	IF	CITATIONS
181	Electron energy loss spectrum application for failure mechanism investigation in semiconductor failure analysis. , 2008, , .		0
182	Low-noise wide-dynamic-range CMOS analog front-end IC for portable biomedical applications. , 2008, ,		0
183	A micromachined SiGe HBT ultraâ€wideband lowâ€noise amplifier by BiCMOS compatible ICP deepâ€trench technology. Microwave and Optical Technology Letters, 2009, 51, 2598-2601.	1.4	Ο
184	A low-power CMOS receiver for wireless sensor networks. Microwave and Optical Technology Letters, 2009, 51, 2618-2620.	1.4	0
185	1.8-dB insertion-loss planar UWB CMOS bandpass filter with suspended inductors. Microwave and Optical Technology Letters, 2009, 51, 2946-2948.	1.4	Ο
186	A lowâ€power 2.4â€GHz receiver frontâ€end for wireless sensor networks. Microwave and Optical Technology Letters, 2009, 51, 3021-3024.	1.4	0
187	A 4.9-dB NF 53.5- to 62-GHz micromachined CMOS wideband LNA with small group-delay-variation. Microwave and Optical Technology Letters, 2010, 52, 2427-2432.	1.4	Ο
188	Micromachinned monopole antenna by CMOSâ€Compatible deep trench technology. Microwave and Optical Technology Letters, 2011, 53, 2971-2973.	1.4	0
189	A compact-size dual-band (tri-mode) receiver front-end with switched harmonic mixer and technology scaling. , 2011, , .		Ο
190	A sensor-merged oscillator-based readout circuit for pizeo-resistive sensing applications. , 2012, , .		0
191	Transmitter frontâ€end with a new wideband active balun in 65â€nm CMOS technology. Microwave and Optical Technology Letters, 2012, 54, 2868-2871.	1.4	Ο
192	A high voltage stimulator using a low-Q class-E pulsed radiofrequency driver for animal study of relieving trigeminal neuralgia pain. , 2014, , .		0
193	Micromachined substrate slots for RF on-chip isolation. Microwave and Optical Technology Letters, 2015, 57, 643-645.	1.4	Ο
194	A parylene micropipette array for enabling simultaneous detection of different target analytes on a CMOS sensor array. , 2016, , .		0
195	A compact low-power millimeter wave voltage-controlled oscillator by using frequency doubling technique. Microwave and Optical Technology Letters, 2017, 59, 2095-2098.	1.4	Ο
196	A Novel Coplanar-Waveguide Band-Pass Filter Utilizing the Inductor–Capacitor Structure in 0.18 µm Complementary Metal–Oxide–Semiconductor Technology for Millimeter-Wave Applications. Japanese Journal of Applied Physics, 2012, 51, 034201.	1.5	0
197	Fabrication and simulation of high-power high-speed Ga/sub 0.51/In/sub 0.49/P/GaAs airbridge gate MISFET's grown by GSMBE. , 0, , .		0