
Nathalie Lamoureux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8667878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laminar flame velocity determination for H2–air–He–CO2 mixtures using the spherical bomb method. Experimental Thermal and Fluid Science, 2003, 27, 385-393.	2.7	206
2	Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures. Fuel, 2020, 263, 116653.	6.4	202
3	Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH4–O2–N2 and C2H2–O2–N2 flames. Combustion and Flame, 2010, 157, 1929-1941.	5.2	92
4	Modeling of NO formation in low pressure premixed flames. Combustion and Flame, 2016, 163, 557-575.	5.2	87
5	Low hydrocarbon mixtures ignition delay times investigation behind reflected shock waves. Shock Waves, 2002, 11, 309-322.	1.9	68
6	Natural gas ignition delay times behind reflected shock waves: Application to modelling and safety. Shock Waves, 2003, 13, 57-68.	1.9	50
7	Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame. Applied Physics B: Lasers and Optics, 2015, 118, 449-469.	2.2	31
8	NCN quantitative measurement in a laminar low pressure flame. Proceedings of the Combustion Institute, 2009, 32, 937-944.	3.9	28
9	Laser-induced incandescence technique to identify soot nucleation and very small particles in low-pressure methane flames. Applied Physics B: Lasers and Optics, 2013, 112, 369-379.	2.2	27
10	Experimental Study and Detailed Modeling of Toluene Degradation in a Low-Pressure Stoichiometric Premixed CH4/O2/N2Flameâ€. Journal of Physical Chemistry A, 2007, 111, 3907-3921.	2.5	22
11	Prompt-NO formation in methane/oxygen/nitrogen flames seeded with oxygenated volatile organic compounds: Methyl ethyl ketone or ethyl acetate. Combustion and Flame, 2008, 153, 186-201.	5.2	21
12	Measurements and modelling of HCN and CN species profiles in laminar CH 4 /O 2 /N 2 low pressure flames using LIF/CRDS techniques. Proceedings of the Combustion Institute, 2015, 35, 745-752.	3.9	20
13	Reinvestigation of the spectroscopy of the transition of the NCN radical at high temperature: Application to quantitative NCN measurement in flames. Combustion and Flame, 2013, 160, 755-765.	5.2	18
14	NO formation in high pressure premixed flames: Experimental results and validation of a new revised reaction mechanism. Fuel, 2020, 260, 116331.	6.4	18
15	Measurements and modelling of nitrogen species in CH4/O2/N2 flames doped with NO, NH3, or NH3+NO. Combustion and Flame, 2017, 176, 48-59.	5.2	15
16	Diode laser atomic fluorescence temperature measurements inÂlow-pressure flames. Applied Physics B: Lasers and Optics, 2008, 93, 907-914.	2.2	14
17	Impact of methyl butanoate oxidation on NO formation in laminar low pressure flames. Fuel, 2017, 207, 801-813.	6.4	14
18	The story of NCN as a key species in prompt-NO formation. Progress in Energy and Combustion Science, 2021, 87, 100940.	31.2	14

#	Article	IF	CITATIONS
19	The accuracy and precision of multi-line NO-LIF thermometry in a wide range of pressures and temperatures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 255, 107257.	2.3	13
20	The rate constant of the reaction NCN + H ₂ and its role in NCN and NO modeling in low pressure CH ₄ /O ₂ /N ₂ -flames. Physical Chemistry Chemical Physics, 2015, 17, 15876-15886.	2.8	12
21	NCO Quantitative Measurement in Premixed Low Pressure Flames by Combining LIF and CRDS Techniques. Journal of Physical Chemistry A, 2011, 115, 5346-5353.	2.5	10
22	HCN quantitative measurement in a laminar low pressure flame at 1036 nm using pulsed CRDS technique. Proceedings of the Combustion Institute, 2013, 34, 3557-3564.	3.9	10
23	<i>In Situ</i> Laser-Induced Fluorescence and <i>Ex Situ</i> Cavity Ring-Down Spectroscopy Applied to NO Measurement in Flames: Microprobe Perturbation and Absolute Quantification. Energy & amp; Fuels, 2021, 35, 7107-7120.	5.1	10
24	Study of the iodine kinetics in thermal conditions of a RCS in nuclear severe accident. Annals of Nuclear Energy, 2017, 101, 69-82.	1.8	7
25	Quantitative NH measurements by using laser-based diagnostics in low-pressure flames. Proceedings of the Combustion Institute, 2019, 37, 1313-1320.	3.9	6
26	Experimental and modeling study of the high-temperature combustion chemistry of tetrahydrofurfuryl alcohol. Proceedings of the Combustion Institute, 2021, 38, 631-640.	3.9	6
27	Quantitative measurement of atomic hydrogen in low-pressure methane flames using two-photon LIF calibrated by krypton. Combustion and Flame, 2021, 224, 248-259.	5.2	6
28	Direct quantification of O-atom in low-pressure methane flames by using two-photon LIF. Proceedings of the Combustion Institute, 2021, 38, 1753-1760.	3.9	5
29	Exploring the Flame Chemistry of C ₅ Tetrahydrofuranic Biofuels: Tetrahydrofurfuryl Alcohol and 2-Methyltetrahydrofuran. Energy & Fuels, 2021, 35, 18699-18715.	5.1	5
30	Interprétation de la double structure observée dans l'onde de détonation du nitrométhane gazeux. Comptes Rendus Mecanique, 2001, 329, 687-692.	0.2	2
31	Comprendre la CRDS pulsée. Photoniques, 2015, , 41-46.	0.1	0