Glenn W Suter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8667813/publications.pdf Version: 2024-02-01

CLENN W SLITED

#	Article	IF	CITATIONS
1	Clearly weighing the evidence in read-across can improve assessments of data-poor chemicals. Regulatory Toxicology and Pharmacology, 2022, 129, 105111.	1.3	3
2	Environmental Assessors Should Use Stateâ€ofâ€Practice Weightâ€ofâ€Evidence Processes. Environmental Toxicology and Chemistry, 2021, 40, 2945-2946.	2.2	2
3	Adequacy of sample size for estimating a value from field observational data. Ecotoxicology and Environmental Safety, 2020, 203, 110992.	2.9	3
4	Systematic Review and Weight of Evidence Are Integral to Ecological and Human Health Assessments: They Need an Integrated Framework. Integrated Environmental Assessment and Management, 2020, 16, 718-728.	1.6	20
5	Statistics Cannot Decide How Much to Protect the Environment. Integrated Environmental Assessment and Management, 2019, 15, 495-496.	1.6	5
6	DOES ENVIRONMENTAL ASSESSMENT HAVE A REPLICATION PROBLEM?. Integrated Environmental Assessment and Management, 2019, 15, 1031-1033.	1.6	0
7	Ecological Risk Assessment. , 2019, , 402-406.		7
8	Assessing background levels of specific conductivity using weight of evidence. Science of the Total Environment, 2018, 628-629, 1637-1649.	3.9	6
9	Specifying the Dimensions of Aquatic Life Benchmark Values in Clear, Complete, and Justified Problem Formulations. Integrated Environmental Assessment and Management, 2018, 14, 631-638.	1.6	3
10	A weight of evidence framework for environmental assessments: Inferring quantities. Integrated Environmental Assessment and Management, 2017, 13, 1045-1051.	1.6	15
11	A weight of evidence framework for environmental assessments: Inferring qualities. Integrated Environmental Assessment and Management, 2017, 13, 1038-1044.	1.6	30
12	Weighing evidence and assessing uncertainties. EFSA Journal, 2016, 14, e00511.	0.9	2
13	The Challenge : Bias is creeping into the science behind risk assessments and undermining its use and credibility. Environmental Toxicology and Chemistry, 2016, 35, 1068-1068.	2.2	7
14	In Response : Bias in the science that supports environmental assessments—A perspective from regulatory assessment. Environmental Toxicology and Chemistry, 2016, 35, 1069-1070.	2.2	1
15	Bias in the development of health and ecological assessments and potential solutions. Human and Ecological Risk Assessment (HERA), 2016, 22, 99-115.	1.7	13
16	Why care about aquatic insects: Uses, benefits, and services. Integrated Environmental Assessment and Management, 2015, 11, 188-194.	1.6	44
17	The Problem of Biased Data and Potential Solutions for Health and Environmental Assessments. Human and Ecological Risk Assessment (HERA), 2015, 21, 1736-1752.	1.7	12
18	Pragmatism: A practical philosophy for environmental scientists. Integrated Environmental Assessment and Management, 2013, 9, 181-184.	1.6	5

#	Article	IF	CITATIONS
19	A method for assessing the potential for confounding applied to ionic strength in central Appalachian streams. Environmental Toxicology and Chemistry, 2013, 32, 288-295.	2.2	22
20	A method for assessing causation of field exposure–response relationships. Environmental Toxicology and Chemistry, 2013, 32, 272-276.	2.2	12
21	A method for deriving waterâ€quality benchmarks using field data. Environmental Toxicology and Chemistry, 2013, 32, 255-262.	2.2	50
22	Assessing causation of the extirpation of stream macroinvertebrates by a mixture of ions. Environmental Toxicology and Chemistry, 2013, 32, 277-287.	2.2	87
23	Derivation of a benchmark for freshwater ionic strength. Environmental Toxicology and Chemistry, 2013, 32, 263-271.	2.2	113
24	Sources of data for water quality criteria. Environmental Toxicology and Chemistry, 2013, 32, 254-254.	2.2	5
25	Review papers are important and worth writing. Environmental Toxicology and Chemistry, 2013, 32, 1929-1930.	2.2	18
26	Response to Roark et al. (2013) "Influence of subsampling and modeling assumptions on the USEPA field-based benchmark for conductivity― Integrated Environmental Assessment and Management, 2013, 9, 677-678.	1.6	3
27	Two Roles for Environmental Assessors: Technical Consultant and Advisor. Human and Ecological Risk Assessment (HERA), 2012, 18, 1153-1155.	1.7	4
28	Comment on "The Vital Importance of Epidemiology in Risk Assessment.―Hum Ecol Risk Assess 16:669–7 Human and Ecological Risk Assessment (HERA), 2011, 17, 280-282.	^{1.} 1.7	0
29	Why and how to combine evidence in environmental assessments: Weighing evidence and building cases. Science of the Total Environment, 2011, 409, 1406-1417.	3.9	80
30	Ecological Risk Assessment of Diffuse and Local Soil Contamination Using Species Sensitivity Distributions. , 2011, , 625-691.		10
31	The Science and Philosophy of a Method for Assessing Environmental Causes. Human and Ecological Risk Assessment (HERA), 2010, 16, 19-34.	1.7	51
32	Causal Characteristics for Ecoepidemiology. Human and Ecological Risk Assessment (HERA), 2010, 16, 53-73.	1.7	41
33	When is a Formal Assessment Process Worthwhile?. Human and Ecological Risk Assessment (HERA), 2010, 16, 1-3.	1.7	6
34	The Future of Ecological Assessment at the U.S. Environmental Protection Agency. Human and Ecological Risk Assessment (HERA), 2010, 16, 1221-1226.	1.7	6
35	Indicators of What for What?. Environmental Bioindicators, 2009, 4, 1-3.	0.4	1

#	Article	IF	CITATIONS
37	Indicators and Endpoints for Risk-Based Decision Processes with Decision Support Systems. , 2009, , 1-18.		3
38	A Framework for Fully Integrating Environmental Assessment. Environmental Management, 2008, 42, 543-56.	1.2	47
39	Revitalizing environmental assessment. Integrated Environmental Assessment and Management, 2008, 4, 385-385.	1.6	1
40	Ecological risk assessment in the United States environmental protection agency: A historical overview. Integrated Environmental Assessment and Management, 2008, 4, 285-289.	1.6	65
41	Enhancing the ecological risk assessment process. Integrated Environmental Assessment and Management, 2008, 4, 306-313.	1.6	59
42	A Theory of Practice for Environmental Assessment. Integrated Environmental Assessment and Management, 2008, 4, 478.	1.6	9
43	What is meant by riskâ€based environmental quality criteria?. Integrated Environmental Assessment and Management, 2008, 4, 486-489.	1.6	16
44	Using field data and weight of evidence to develop water quality criteria. Integrated Environmental Assessment and Management, 2008, 4, 490-504.	1.6	48
45	The Apache Longbow–Hellfire Missile Test at Yuma Proving Ground: Ecological Risk Assessment for Helicopter Overflight. Human and Ecological Risk Assessment (HERA), 2008, 14, 871-897.	1.7	Ο
46	An Assessment of Integrated Risk Assessment. Human and Ecological Risk Assessment (HERA), 2007, 13, 339-354.	1.7	10
47	Ecological Risk Assessment in the U.S. EPA: A Historical Overview. Integrated Environmental Assessment and Management, 2007, preprint, 1.	1.6	7
48	Ecological Risk Assessment and Ecological Epidemiology for Contaminated Sites. Human and Ecological Risk Assessment (HERA), 2006, 12, 31-38.	1.7	18
49	CADDIS: A System to Help Investigators Determine the Causes of Biological Impairments in Aquatic Systems. Proceedings of the Water Environment Federation, 2005, 2005, 671-685.	0.0	0
50	An integrated framework for health and ecological risk assessment. Toxicology and Applied Pharmacology, 2005, 207, 611-616.	1.3	53
51	Individuals versus organisms versus populations in the definition of ecological assessment endpoints. Integrated Environmental Assessment and Management, 2005, 1, 397-400.	1.6	21
52	Individuals versus organisms versus populations in the definition of ecological assessment endpoints. Integrated Environmental Assessment and Management, 2005, 1, 397-400.	1.6	4
53	Bottom-Up and Top-Down Integration of Human And Ecological Risk Assessment. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2004, 67, 779-790.	1.1	12
54	The U.S. Environmental Protection Agency's Generic Ecological Assessment Endpoints. Human and Ecological Risk Assessment (HERA), 2004, 10, 967-981.	1.7	14

#	Article	IF	CITATIONS
55	A Framework for Net Environmental Benefit Analysis for Remediation or Restoration of Contaminated Sites. Environmental Management, 2004, 34, 315-331.	1.2	84
56	The easiest person to fool. Environmental Toxicology and Chemistry, 2002, 21, 1099-1100.	2.2	1
57	A methodology for inferring the causes of observed impairments in aquatic ecosystems. Environmental Toxicology and Chemistry, 2002, 21, 1101-1111.	2.2	111
58	Determining probable causes of ecological impairment in the Little Scioto River, Ohio, USA: Part 1. Listing candidate causes and analyzing evidence. Environmental Toxicology and Chemistry, 2002, 21, 1112-1124.	2.2	29
59	Determining the causes of impairments in the Little Scioto River, Ohio, USA: Part 2. Characterization of causes. Environmental Toxicology and Chemistry, 2002, 21, 1125-1137.	2.2	26
60	A methodology for inferring the causes of observed impairments in aquatic ecosystems. , 2002, 21, 1101.		16
61	A methodology for inferring the causes of observed impairments in aquatic ecosystems. Environmental Toxicology and Chemistry, 2002, 21, 1101-11.	2.2	22
62	Applicability of indicator monitoring to ecological risk assessment. Ecological Indicators, 2001, 1, 101-112.	2.6	84
63	Uptake of inorganic chemicals from soil by plant leaves: Regressions of field data. Environmental Toxicology and Chemistry, 2001, 20, 2561-2571.	2.2	62
64	Ecological risk assessment in a large riverâ€reservoir: 1. Introduction and background. Environmental Toxicology and Chemistry, 1999, 18, 581-588.	2.2	35
65	Ecological risk assessment in a large river-reservoir: 3. Benthic invertebrates. Environmental Toxicology and Chemistry, 1999, 18, 599-609.	2.2	34
66	Ecological risk assessment in a large riverâ€reservoir: 4. Piscivorous wildlife. Environmental Toxicology and Chemistry, 1999, 18, 610-620.	2.2	36
67	Abuse of hypothesis testing statistics in ecological risk assessment. Human and Ecological Risk Assessment (HERA), 1996, 2, 331-347.	1.7	92
68	Adapting ecological risk assessment for ecosystem valuation. Ecological Economics, 1995, 14, 137-141.	2.9	23
69	A critique of ecosystem health concepts and indexes. Environmental Toxicology and Chemistry, 1993, 12, 1533-1539.	2.2	315
70	New concepts in the ecological aspects of stress: The problem of extrapolation. Science of the Total Environment, 1993, 134, 63-76.	3.9	7
71	Weighing the ecological risk of hazardous waste sites. The Oak Ridge case. Environmental Science & Technology, 1992, 26, 432-438.	4.6	22
72	Risks of toxic contaminants to exploited fish populations: Influence of life history, data uncertainty and exploitation intensity. Environmental Toxicology and Chemistry, 1990, 9, 297-311.	2.2	71

#	Article	IF	CITATIONS
73	Sevenâ€day tests and chronic tests. Environmental Toxicology and Chemistry, 1990, 9, 1435-1435.	2.2	8
74	Endpoints for regional ecological risk assessments. Environmental Management, 1990, 14, 9-23.	1.2	155
75	Uncertainty in Environmental Risk Assessment. , 1990, , 203-230.		12
76	Comparative toxicology for risk assessment of marine fishes and crustaceans. Environmental Science & Technology, 1988, 22, 548-556.	4.6	52
77	Quantifying risks of toxic chemicals to aquatic populations and ecosystems. Chemosphere, 1988, 17, 1487-1492.	4.2	9
78	Endpoints for responses of fish to chronic toxic exposures. Environmental Toxicology and Chemistry, 1987, 6, 793-809.	2.2	84
79	Estimating responses of fish populations to toxic contaminants. Environmental Toxicology and Chemistry, 1987, 6, 811-824.	2.2	58