Maxime Babics

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8667797/publications.pdf

Version: 2024-02-01

346980 445137 1,659 33 22 33 h-index citations g-index papers 35 35 35 2024 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	All Set for Efficient and Reliable Perovskite/Silicon Tandem Photovoltaic Modules?. Solar Rrl, 2022, 6, 2100493.	3.1	21
2	Mechanical Reliability of Fullerene/Tin Oxide Interfaces in Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Letters, 2022, 7, 827-833.	8.8	25
3	Unleashing the Full Power of Perovskite/Silicon Tandem Modules with Solar Trackers. ACS Energy Letters, 2022, 7, 1604-1610.	8.8	18
4	Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science, 2022, 376, 73-77.	6.0	366
5	Monolithic Perovskite/Silicon Tandem Photovoltaics with Minimized Cell-to-Module Losses by Refractive-Index Engineering. ACS Energy Letters, 2022, 7, 2370-2372.	8.8	20
6	Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgF <i>_x </i> . Science, 2022, 377, 302-306.	6.0	141
7	Non-fullerene-based organic photodetectors for infrared communication. Journal of Materials Chemistry C, 2021, 9, 2375-2380.	2.7	37
8	Toward Stable Monolithic Perovskite/Silicon Tandem Photovoltaics: A Six-Month Outdoor Performance Study in a Hot and Humid Climate. ACS Energy Letters, 2021, 6, 2944-2951.	8.8	42
9	Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy and Environmental Science, 2021, 14, 4377-4390.	15.6	79
10	28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule, 2021, 5, 3169-3186.	11.7	99
11	Difluorinated Oligothiophenes for Highâ€Efficiency Allâ€Smallâ€Molecule Organic Solar Cells: Positional Isomeric Effect of Fluorine Substitution on Performance Variations. Solar Rrl, 2020, 4, 1900472.	3.1	11
12	Nonfullerene-Based Organic Photodetectors for Ultrahigh Sensitivity Visible Light Detection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48836-48844.	4.0	40
13	Impact of Nonfullerene Acceptor Side Chain Variation on Transistor Mobility. Advanced Electronic Materials, 2019, 5, 1900344.	2.6	45
14	<i>N</i> â€Acylisoindigo Derivatives as Polymer Acceptors for "Allâ€Polymer―Bulkâ€Heterojunction Solar Cells. Macromolecular Chemistry and Physics, 2019, 220, 1900029.	1.1	4
15	End Group Tuning in Acceptor–Donor–Acceptor Nonfullerene Small Molecules for High Fill Factor Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1808429.	7.8	41
16	Negligible Energy Loss During Charge Generation in Small-Molecule/Fullerene Bulk-Heterojunction Solar Cells Leads to Open-Circuit Voltage over 1.10 V. ACS Applied Energy Materials, 2019, 2, 2717-2722.	2.5	27
17	Higher Mobility and Carrier Lifetimes in Solutionâ€Processable Smallâ€Molecule Ternary Solar Cells with 11% Efficiency. Advanced Energy Materials, 2019, 9, 1802836.	10.2	65
18	Triphenylamine-Based Push–Pull Ïf–C ₆₀ Dyad As Photoactive Molecular Material for Single-Component Organic Solar Cells: Synthesis, Characterizations, and Photophysical Properties. Chemistry of Materials, 2018, 30, 3474-3485.	3.2	58

#	Article	IF	CITATIONS
19	F-Substituted oligothiophenes serve as nonfullerene acceptors in polymer solar cells with open-circuit voltages >1 V. Journal of Materials Chemistry A, 2018, 6, 9368-9372.	5.2	21
20	Carrier Transport and Recombination in Efficient "Allâ€Smallâ€Molecule―Solar Cells with the Nonfullerene Acceptor IDTBR. Advanced Energy Materials, 2018, 8, 1800264.	10.2	63
21	Mixed Domains Enhance Charge Generation and Extraction in Bulkâ€Heterojunction Solar Cells with Smallâ€Molecule Donors. Advanced Energy Materials, 2018, 8, 1702941.	10.2	43
22	Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells. Chemistry of Materials, 2018, 30, 789-798.	3.2	48
23	Additiveâ€Morphology Interplay and Loss Channels in "Allâ€Smallâ€Molecule―Bulkâ€heterojunction (BHJ) Solar Cells with the Nonfullerene Acceptor IDTTBM. Advanced Functional Materials, 2018, 28, 1705464.	7.8	40
24	Impact of Polymer Side Chain Modification on OPV Morphology and Performance. Chemistry of Materials, 2018, 30, 7872-7884.	3.2	38
25	Long-Range Molecular Self-Assembly from π-Extended Pyrene-Functionalized Diketopyrrolopyrroles. Chemistry of Materials, 2018, 30, 5032-5040.	3.2	22
26	Atomic-layer-deposited AZO outperforms ITO in high-efficiency polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 10176-10183.	5.2	33
27	Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]Dithiophene–6,7â€Difluoroquinoxaline Small Molecule Donors with >8% BHJ Solar Cell Efficiency. Advanced Energy Materials, 2017, 7, 1602804.	10.2	11
28	Donor and Acceptor Unit Sequences Influence Material Performance in Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> :8€2]dithiophene–6,7â€Difluoroquinoxaline Small Molecule Donors for BHJ Solar Cells. Advanced Functional Materials, 2016, 26, 7103-7114.	7.8	26
29	Solvent Annealing Effects in Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrole–5,6-Difluorobenzo[<i>c</i>][1,2,5]thiadiazole Small Moleculo Donors for Bulk-Heterojunction Solar Cells. Chemistry of Materials, 2016, 28, 5415-5425.	e3 . 2	28
30	Benzo[1,2- <i>b</i> :4,5- <i>b</i> â \in 2]dithiopheneâ \in "Pyrido[3,4- <i>b</i>]pyrazine Small-Molecule Donors for Bulk Heterojunction Solar Cells. Chemistry of Materials, 2016, 28, 2058-2066.	3.2	41
31	Ï€-Bridge-Independent 2-(Benzo[<i>c</i>)][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Bulk Heterojunction Solar Cells. Chemistry of Materials, 2016, 28, 2200-2208.	3.2	98
32	The multiple ways of making perovskite/silicon tandem solar cells: Which way to go?., 0,,.		0
33	Monolithic perovskite/silicon tandem solar cells: combining stability with high performance. , 0, , .		0