Huiqun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8667534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel bivalent ligands carrying potential antinociceptive effects by targeting putative mu opioid receptor and chemokine receptor CXCR4 heterodimers. Bioorganic Chemistry, 2022, 120, 105641.	4.1	5
2	IOX1 Suppresses Wnt Target Gene Transcription and Colorectal Cancer Tumorigenesis through Inhibition of KDM3 Histone Demethylases. Molecular Cancer Therapeutics, 2021, 20, 191-202.	4.1	13
3	Insight into the drug resistance mechanisms of CS-9669 caused by mutations of HCV NS5B polymerase via molecular simulation. Computational and Structural Biotechnology Journal, 2021, 19, 2761-2774.	4.1	3
4	Exploring the putative mechanism of allosteric modulations by mixed-action kappa/mu opioid receptor bitopic modulators. Future Medicinal Chemistry, 2021, 13, 551-573.	2.3	4
5	Verifying the role of 3-hydroxy of 17-cyclopropylmethyl-4,5α-epoxy-3,14β-dihydroxy-6β-[(4′-pyridyl) carboxamido]morphinan derivatives via their binding affinity and selectivity profiles on opioid receptors. Bioorganic Chemistry, 2021, 109, 104702.	4.1	5
6	Structure-Based Design and Development of Chemical Probes Targeting Putative MOR-CCR5 Heterodimers to Inhibit Opioid Exacerbated HIV-1 Infectivity. Journal of Medicinal Chemistry, 2021, 64, 7702-7723.	6.4	8
7	Exploring naltrexamine derivatives featuring azaindole moiety via nitrogen-walk approach to investigate their in vitro pharmacological profiles at the mu opioid receptor. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 127953.	2.2	2
8	Bivalent Ligand Aiming Putative Mu Opioid Receptor and Chemokine Receptor CXCR4 Dimers in Opioid Enhanced HIV-1 Entry. ACS Medicinal Chemistry Letters, 2020, 11, 2318-2324.	2.8	7
9	Comparison of Pharmacological Properties between the Kappa Opioid Receptor Agonist Nalfurafine and 42B, Its 3-Dehydroxy Analogue: Disconnect between <i>in Vitro</i> Agonist Bias and <i>in Vivo</i> Pharmacological Effects. ACS Chemical Neuroscience, 2020, 11, 3036-3050.	3.5	17
10	Computational insight into the mechanisms of action and selectivity of Afraxis PAK inhibitors. Future Medicinal Chemistry, 2020, 12, 367-385.	2.3	3
11	Computational insights into the molecular mechanisms of differentiated allosteric modulation at the mu opioid receptor by structurally similar bitopic modulators. Journal of Computer-Aided Molecular Design, 2020, 34, 879-895.	2.9	9
12	Characterization of 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(indole-7-carboxamido)morphinan (NAN) as a Novel Opioid Receptor Modulator for Opioid Use Disorder Treatment. ACS Chemical Neuroscience, 2019, 10, 2518-2532.	3.5	17
13	Application of Bivalent Bioisostere Concept on Design and Discovery of Potent Opioid Receptor Modulators. Journal of Medicinal Chemistry, 2019, 62, 11399-11415.	6.4	12
14	Structure–Activity Relationship Studies of 6α- and 6β-Indolylacetamidonaltrexamine Derivatives as Bitopic Mu Opioid Receptor Modulators and Elaboration of the "Message-Address Concept―To Comprehend Their Functional Conversion. ACS Chemical Neuroscience, 2019, 10, 1075-1090.	3.5	28
15	Design, Synthesis, and Biological Evaluation of the Third Generation 17-Cyclopropylmethyl-3,14l²-dihydroxy-4,5l̂±-epoxy-6l²-[(4′-pyridyl)carboxamido]morphinan (NAP) Derivatives as μ/l̂º Opioid Receptor Dual Selective Ligands. Journal of Medicinal Chemistry, 2019, 62, 561-574.	6.4	17
16	Recent Advances in the Drug Discovery and Development of Dualsteric/ Bitopic Activators of G Protein-Coupled Receptors. Current Topics in Medicinal Chemistry, 2019, 19, 2378-2392.	2.1	14
17	Understanding the role of glucose regulated protein 170 (GRP170) as a nucleotide exchange factor through molecular simulations. Journal of Molecular Graphics and Modelling, 2018, 85, 160-170.	2.4	7
18	Methylation Products of 6β- <i>N</i> -Heterocyclic Substituted Naltrexamine Derivatives as Potential Peripheral Opioid Receptor Modulators, ACS Chemical Neuroscience, 2018, 9, 3028-3037.	3.5	6

#	Article	IF	CITATIONS
19	Exploring the binding mechanisms of diaminopimelic acid analogs to meso-diaminopimelate dehydrogenase by molecular modeling. Journal of Molecular Graphics and Modelling, 2018, 83, 100-111.	2.4	3
20	Binding mode analyses of NAP derivatives as mu opioid receptor selective ligands through docking studies and molecular dynamics simulation. Bioorganic and Medicinal Chemistry, 2017, 25, 2463-2471.	3.0	11
21	Diaminopimelic acid (DAP) analogs bearing isoxazoline moiety as selective inhibitors against meso-diaminopimelate dehydrogenase (m-Ddh) from Porphyromonas gingivalis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3840-3844.	2.2	6