
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8667397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Repurposing Pomalidomide as a Neuroprotective Drug: Efficacy in an Alpha-Synuclein-Based Model of Parkinson's Disease. Neurotherapeutics, 2022, 19, 305-324.	2.1	3
2	Nicotine, cocaine, amphetamine, morphine, and ethanol increase norepinephrine output in the bed nucleus of stria terminalis of freely moving rats. Addiction Biology, 2021, 26, e12864.	1.4	16
3	Repurposing Immunomodulatory Imide Drugs (IMiDs) in Neuropsychiatric and Neurodegenerative Disorders. Frontiers in Neuroscience, 2021, 15, 656921.	1.4	16
4	Repurposing Ketamine in Depression and Related Disorders: Can This Enigmatic Drug Achieve Success?. Frontiers in Neuroscience, 2021, 15, 657714.	1.4	13
5	Modeling Parkinson's Disease Neuropathology and Symptoms by Intranigral Inoculation of Preformed Human I±-Synuclein Oligomers. International Journal of Molecular Sciences, 2020, 21, 8535.	1.8	24
6	Metabolomics Fingerprint Induced by the Intranigral Inoculation of Exogenous Human Alpha-Synuclein Oligomers in a Rat Model of Parkinson's Disease. International Journal of Molecular Sciences, 2020, 21, 6745.	1.8	3
7	The role of glia in Parkinson's disease: Emerging concepts and therapeutic applications. Progress in Brain Research, 2020, 252, 131-168.	0.9	21
8	Neuroprotection by the Immunomodulatory Drug Pomalidomide in the Drosophila LRRK2WD40 Genetic Model of Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 31.	1.7	13
9	Advances in modelling alpha-synuclein-induced Parkinson's diseases in rodents: Virus-based models versus inoculation of exogenous preformed toxic species. Journal of Neuroscience Methods, 2020, 338, 108685.	1.3	16
10	Can pioglitazone be potentially useful therapeutically in treating patients with COVID-19?. Medical Hypotheses, 2020, 140, 109776.	0.8	75
11	Beneficial effects of curtailing immune susceptibility in an Alzheimer's disease model. Journal of Neuroinflammation, 2019, 16, 166.	3.1	27
12	Immunomodulatory drugs alleviate <scp>l</scp> â€dopaâ€induced dyskinesia in a rat model of Parkinson's disease. Movement Disorders, 2019, 34, 1818-1830.	2.2	44
13	Trimethyl Chitosan Hydrogel Nanoparticles for Progesterone Delivery in Neurodegenerative Disorders. Pharmaceutics, 2019, 11, 657.	2.0	26
14	Boosting phagocytosis and antiâ€inflammatory phenotype in microglia mediates neuroprotection by PPARγ agonist MDG548 in Parkinson's disease models. British Journal of Pharmacology, 2018, 175, 3298-3314.	2.7	48
15	Neuroinflammation in l-DOPA-induced dyskinesia: beyond the immune function. Journal of Neural Transmission, 2018, 125, 1287-1297.	1.4	35
16	Microglial Phagocytosis and Its Regulation: A Therapeutic Target in Parkinson's Disease?. Frontiers in Molecular Neuroscience, 2018, 11, 144.	1.4	130
17	Microglial phenotypes in Parkinson's disease and animal models of the disease. Progress in Neurobiology, 2017, 155, 57-75.	2.8	202
18	<scp>l</scp> â€DOPAâ€induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role?. European Journal of Neuroscience, 2017, 45, 73-91.	1.2	56

#	Article	IF	CITATIONS
19	Role of Adenosine in the Basal Ganglia. Handbook of Behavioral Neuroscience, 2016, , 237-256.	0.7	0
20	Differential induction of dyskinesia and neuroinflammation by pulsatile versus continuous l -DOPA delivery in the 6-OHDA model of Parkinson's disease. Experimental Neurology, 2016, 286, 83-92.	2.0	75
21	Neuroprotective and anti-inflammatory properties of a novel non-thiazolidinedione PPARÎ ³ agonist in vitro and in MPTP-treated mice. Neuroscience, 2015, 302, 23-35.	1.1	37
22	Activation of PPAR gamma receptors reduces levodopa-induced dyskinesias in 6-OHDA-lesioned rats. Neurobiology of Disease, 2015, 74, 295-304.	2.1	51
23	Thiazolidinediones under preclinical and early clinical development for the treatment of Parkinson's disease. Expert Opinion on Investigational Drugs, 2015, 24, 219-227.	1.9	28
24	Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-Î ³ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiology of Disease, 2014, 71, 280-291.	2.1	218
25	MPTP: Advances from an Evergreen Neurotoxin. , 2014, , 2099-2124.		Ο
26	The MPTP/Probenecid Model of Progressive Parkinson's Disease. Methods in Molecular Biology, 2013, 964, 295-308.	0.4	26
27	Modulating Microglia Activity with PPAR-γ Agonists: A Promising Therapy for Parkinson's Disease?. Neurotoxicity Research, 2013, 23, 112-123.	1.3	54
28	PPAR-γ: Therapeutic Prospects in Parkinson's Disease. Current Drug Targets, 2013, 14, 743-751.	1.0	62
29	The role of microglia–lymphocyte interaction in PD neuropathology. Basal Ganglia, 2012, 2, 123-130.	0.3	1
30	Nematicidal Activity of 2-Thiophenecarboxaldehyde and Methylisothiocyanate from Caper (<i>Capparis) Tj ETQq 60, 7345-7351.</i>	0 0 0 rgBT 2.4	/Overlock 10 36
31	Dyskinesia in Parkinson's Disease Therapy. Parkinson's Disease, 2012, 2012, 1-2.	0.6	0
32	Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson's disease model. Neuroscience, 2011, 194, 250-261.	1.1	125
33	Do PPAR-Gamma Agonists Have a Future in Parkinson's Disease Therapy?. Parkinson's Disease, 2011, 2011, 1-14.	0.6	37
34	Role of Adenosine in the Basal Ganglia. Handbook of Behavioral Neuroscience, 2010, , 201-217.	0.7	0
35	Pathophysiological roles for purines. Progress in Brain Research, 2010, 183, 183-208.	0.9	81
36	Dyskinetic potential of dopamine agonists is associated with different striatonigral/striatopallidal zif-268 expression. Experimental Neurology, 2010, 224, 395-402.	2.0	17

#	Article	IF	CITATIONS
37	Progressive Dopaminergic Degeneration in the Chronic MPTPp Mouse Model of Parkinson's Disease. Neurotoxicity Research, 2009, 16, 127-139.	1.3	86
38	PPARâ€gammaâ€mediated neuroprotection in a chronic mouse model of Parkinson's disease. European Journal of Neuroscience, 2009, 29, 954-963.	1.2	186
39	Inactivation of neuronal forebrain A _{2A} receptors protects dopaminergic neurons in a mouse model of Parkinson's disease. Journal of Neurochemistry, 2009, 111, 1478-1489.	2.1	64
40	Adenosine A2A Receptors and Parkinson's Disease. Handbook of Experimental Pharmacology, 2009, , 589-615.	0.9	102
41	Behavioural Correlates of Dopaminergic Agonists' Dyskinetic Potential in the 6-OHDA-Lesioned Rat. Advances in Behavioral Biology, 2009, , 461-470.	0.2	0
42	Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6â€OHDA lesioned rat. Synapse, 2008, 62, 524-533.	0.6	40
43	Longâ€ŧerm increase in GAD67 mRNA expression in the central amygdala of rats sensitized by drugs and stress. European Journal of Neuroscience, 2008, 27, 1220-1230.	1.2	14
44	Direct and indirect striatal efferent pathways are differentially influenced by low and high dyskinetic drugs: Behavioural and biochemical evidence. Parkinsonism and Related Disorders, 2008, 14, S165-S168.	1.1	18
45	The 6-Hydroxydopamine model of parkinson's disease. Neurotoxicity Research, 2007, 11, 151-167.	1.3	353
46	Dopamine and adenosine receptor interaction as basis for the treatment of Parkinson's disease. Journal of the Neurological Sciences, 2006, 248, 48-52.	0.3	25
47	GABAA receptors mediate orexin-A induced stimulation of food intake. Neuropharmacology, 2006, 50, 16-24.	2.0	35
48	How reliable is the behavioural evaluation of dyskinesia in animal models of Parkinson??s disease?. Behavioural Pharmacology, 2006, 17, 393-402.	0.8	27
49	Potentiation of amphetamine-mediated responses in caffeine-sensitized rats involves modifications in A2A receptors and zif-268 mRNAs in striatal neurons. Journal of Neurochemistry, 2006, 98, 1078-1089.	2.1	23
50	B67 INCREASE IN BASAL GAD67 mRNA EXPRESSION IN THE CENTRAL NUCLEUS OF THE AMYGDALA: A MARKER OF STRESS AND DRUG-INDUCED BEHAVIOURAL SENSITIZATION. Behavioural Pharmacology, 2005, 16, S87.	0.8	0
51	A89 CAFFEINE SENSITIZATION AND CROSS-SENSITIZATION WITH AMPHETAMINE: ASSOCIATION WITH POST-SYNAPTIC CHANGES IN RAT STRIATAL NEURONS. Behavioural Pharmacology, 2005, 16, S51.	0.8	0
52	Different responsiveness of striatonigral and striatopallidal neurons to L-DOPA after a subchronic intermittent L-DOPA treatment. European Journal of Neuroscience, 2005, 21, 1196-1204.	1.2	64
53	Changes in the Expression of Tonic and Phasic Neurochemical Markers of Activity in a Rat Model of L-DOPA Induced Dyskinesia. , 2005, , 371-378.		0
54	EEG modifications in the cortex and striatum after dopaminergic priming in the 6-hydroxydopamine rat model of Parkinson's disease. Brain Research, 2003, 972, 177-185.	1.1	25

#	Article	IF	CITATIONS
55	Selective modifications in GAD67 mRNA levels in striatonigral and striatopallidal pathways correlate to dopamine agonist priming in 6-hydroxydopamine-lesioned rats. European Journal of Neuroscience, 2003, 18, 2563-2572.	1.2	38
56	Blockade of A2A receptors plus l-DOPA after nigrostriatal lesion results in GAD67 mRNA changes different from l-DOPA alone in the rat globus pallidus and substantia nigra reticulata. Experimental Neurology, 2003, 184, 679-687.	2.0	25
57	Ontogenesis of Leptin Receptor in Rat Leydig Cells1. Biology of Reproduction, 2003, 68, 1199-1207.	1.2	63
58	Adenosine A _{2A} and dopamine receptor interactions in basal ganglia of dopamine denervated rats. Neurology, 2003, 61, S39-43.	1.5	18
59	Modification of adenosine extracellular levels and adenosine A2A receptor mRNA by dopamine denervation. European Journal of Pharmacology, 2002, 446, 75-82.	1.7	71
60	Differential regulation of GAD67, enkephalin and dynorphin mRNAs by chronic-intermittentL-dopa and A2A receptor blockade plusL-Dopa in dopamine-denervated rats. Synapse, 2002, 44, 166-174.	0.6	62
61	Alterations in GAD67, dynorphin and enkephalin mRNA in striatal output neurons following priming in the 6-OHDA model of Parkinson's disease. Neurological Sciences, 2001, 22, 59-60.	0.9	22
62	Cocaine effects on gene regulation in the striatum and behavior. NeuroReport, 2000, 11, 2395-2399.	0.6	49
63	Expression of Functional Leptin Receptors in Rodent Leydig Cells1. Endocrinology, 1999, 140, 4939-4947.	1.4	229
64	Lack of a role for the D3 receptor in clozapine induction of c-fos demonstrated in D3 dopamine receptor-deficient mice. Neuroscience, 1999, 90, 1021-1029.	1.1	16
65	Effect of MK 801 on priming of D1-dependent contralateral turning and its relationship to c-fos expression in the rat caudate-putamen. Behavioural Brain Research, 1996, 79, 93-100.	1.2	17
66	Modulation of dopamine D1-mediated turning behavior and striatal c-fos expression by the substantia nigra. Synapse, 1995, 19, 233-240.	0.6	19
67	Differential effect of MK 801 and scopolamine on c-fos expression induced by L-dopa in the striatum of 6-hydroxydopamine lesioned rats. Synapse, 1994, 18, 288-293.	0.6	27
68	l-Dopa stimulates c-fos expression in dopamine denervated striatum by combined activation of D-1 and D-2 receptors. Brain Research, 1993, 623, 334-336.	1.1	51
69	Blockade of muscarinic receptors potentiates D1 dependent turning behavior and c-fos expression in 6-hydroxydopamine-lesioned rats but does not influence D2 mediated responses. Neuroscience, 1993, 53, 673-678.	1.1	49