
Gillian A Gray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8667125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preclinical models of myocardial infarction: from mechanism to translation. British Journal of Pharmacology, 2022, 179, 770-791.	2.7	16
2	Quantification of Macrophage-Driven Inflammation During Myocardial Infarction with ¹⁸ F-LW223, a Novel TSPO Radiotracer with Binding Independent of the rs6971 Human Polymorphism. Journal of Nuclear Medicine, 2021, 62, 536-544.	2.8	31
3	The Influence of the LINC00961/SPAAR Locus Loss on Murine Development, Myocardial Dynamics, and Cardiac Response to Myocardial Infarction. International Journal of Molecular Sciences, 2021, 22, 969.	1.8	9
4	Positron Emission Tomography Techniques to Measure Active Inflammation, Fibrosis and Angiogenesis: Potential for Non-invasive Imaging of Hypertensive Heart Failure. Frontiers in Cardiovascular Medicine, 2021, 8, 719031.	1.1	9
5	The hepatic compensatory response to elevated systemic sulfide promotes diabetes. Cell Reports, 2021, 37, 109958.	2.9	9
6	Electrocardiogram-gated Kilohertz Visualisation (EKV) Ultrasound Allows Assessment of Neonatal Cardiac Structural and Functional Maturation and Longitudinal Evaluation of Regeneration After Injury. Ultrasound in Medicine and Biology, 2020, 46, 167-179.	0.7	6
7	Transfer of hepatocellular microRNA regulates cytochrome P450 2E1 in renal tubular cells. EBioMedicine, 2020, 62, 103092.	2.7	11
8	Progression and regression of left ventricular hypertrophy and myocardial fibrosis in a mouse model of hypertension and concomitant cardiomyopathy. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 57.	1.6	21
9	OP9â€Single Cell RNA-sequencing reveals novel targets with a potential role in vascular regeneration in the ischaemic adult heart. , 2020, , .		0
10	Targeting the Main Anatomopathological Features in Animal Models of Myocardial Infarction. Journal of Comparative Pathology, 2020, 176, 33-38.	0.1	1
11	Eosinophil Deficiency Promotes Aberrant Repair and Adverse Remodeling Following Acute Myocardial Infarction. JACC Basic To Translational Science, 2020, 5, 665-681.	1.9	46
12	Manganese-enhanced T1 mapping to quantify myocardial viability: validation with 18F-fluorodeoxyglucose positron emission tomography. Scientific Reports, 2020, 10, 2018.	1.6	10
13	miR-96 and miR-183 differentially regulate neonatal and adult postinfarct neovascularization. JCI Insight, 2020, 5, .	2.3	14
14	Enhanced monocyte recruitment and delayed alternative macrophage polarization accompanies impaired repair following myocardial infarction in C57BL/6 compared to BALB/c mice. Clinical and Experimental Immunology, 2019, 198, 83-93.	1.1	12
15	Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction. European Heart Journal, 2019, 40, 2507-2520.	1.0	149
16	Antenatal dexamethasone treatment transiently alters diastolic function in the mouse fetal heart. Journal of Endocrinology, 2019, 241, 279-292.	1.2	11
17	Resident cells of the myocardium: more than spectators in cardiac injury, repair and regeneration. Current Opinion in Physiology, 2018, 1, 46-51.	0.9	42
18	Manganese-Enhanced T ₁ Mapping in the Myocardium of Normal and Infarcted Hearts. Contrast Media and Molecular Imaging, 2018, 2018, 1-13.	0.4	15

#	Article	IF	CITATIONS
19	MicroRNA-148b Targets the TGF-Î ² Pathway to Regulate Angiogenesis and Endothelial-to-Mesenchymal Transition during Skin Wound Healing. Molecular Therapy, 2018, 26, 1996-2007.	3.7	67
20	Statistical considerations in reporting cardiovascular research. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H303-H313.	1.5	58
21	Glucocorticoid receptor alters isovolumetric contraction and restrains cardiac fibrosis. Journal of Endocrinology, 2017, 232, 437-450.	1.2	20
22	11β-HSD1 suppresses cardiac fibroblast CXCL2, CXCL5 and neutrophil recruitment to the heart post MI. Journal of Endocrinology, 2017, 233, 315-327.	1.2	42
23	$\hat{I}\pm\nu$ integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nature Communications, 2017, 8, 1118.	5.8	81
24	Getting to the heart of intracellular glucocorticoid regeneration: 11β-HSD1 in the myocardium. Journal of Molecular Endocrinology, 2017, 58, R1-R13.	1.1	28
25	A tail of translational regulation. ELife, 2017, 6, .	2.8	5
26	Bone marrow transplantation modulates tissue macrophage phenotype and enhances cardiac recovery after subsequent acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 2016, 90, 120-128.	0.9	12
27	Cardiac GR and MR: From Development to Pathology. Trends in Endocrinology and Metabolism, 2016, 27, 35-43.	3.1	29
28	Cardiomyocyte and Vascular Smooth Muscle-Independent 11β-Hydroxysteroid Dehydrogenase 1 Amplifies Infarct Expansion, Hypertrophy, and the Development of Heart Failure After Myocardial Infarction in Male Mice. Endocrinology, 2016, 157, 346-357.	1.4	28
29	A Protocol for Improved Measurement of Arterial Flow Rate in Preclinical Ultrasound. Ultrasound International Open, 2015, 01, E46-E52.	0.3	14
30	The adult murine heart has a sparse, phagocytically active macrophage population that expands through monocyte recruitment and adopts an â€~M2' phenotype in response to Th2 immunologic challenge. Immunobiology, 2015, 220, 924-933.	0.8	43
31	Optical projection tomography permits efficient assessment of infarct volume in the murine heart postmyocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H702-H710.	1.5	9
32	Human Myocardial Pericytes: Multipotent Mesodermal Precursors Exhibiting Cardiac Specificity. Stem Cells, 2015, 33, 557-573.	1.4	132
33	Acoustic Assessment of a Konjac–Carrageenan Tissue-Mimicking Material at 5–60ÂMHz. Ultrasound in Medicine and Biology, 2014, 40, 2895-2902.	0.7	16
34	Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via activation of sensory TRPV1 and β1 adrenoreceptors. Particle and Fibre Toxicology, 2014, 11, 12.	2.8	63
35	Biological sex themed section: Incorporating the female dimension into cardiovascular pharmacology. British Journal of Pharmacology, 2014, 171, 537-540.	2.7	4
36	Application of kt-BLAST acceleration to reduce cardiac MR imaging time in healthy and infarcted mice. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2014, 27, 201-210.	1.1	3

#	Article	IF	CITATIONS
37	19â€Sex Differences in Pathological Remodelling Caused by Cardiomyocyte/Vascular Smooth Muscle Glucocorticoid Receptor Defficiency. Heart, 2014, 100, A7.2-A7.	1.2	0
38	Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom. Ultrasound in Medicine and Biology, 2013, 39, 1491-1499.	0.7	18
39	Highâ€resolution echocardiography in the assessment of cardiac physiology and disease in preclinical models. Experimental Physiology, 2013, 98, 629-644.	0.9	37
40	Imaging the healing murine myocardial infarct <i>in vivo</i> : ultrasound, magnetic resonance imaging and fluorescence molecular tomography. Experimental Physiology, 2013, 98, 606-613.	0.9	11
41	Advancing our understanding of the pathophysiology of cardiac disease using <i>in vivo</i> assessment of heart structure and function in rodent models. Experimental Physiology, 2013, 98, 599-600.	0.9	Ο
42	CARDIOVASCULAR PHENOTYPING OF MICE WITH TARGETED 11Î ² -HYDROXYSTEROID DEHYDROGENASE TYPE 1 DELETION. Heart, 2012, 98, A4.2-A4.	1.2	1
43	A ROLE FOR THE GLUCOCORTICOID RECEPTOR IN CARDIAC REMODELLING?. Heart, 2012, 98, A3.1-A3.	1.2	0
44	Diesel exhaust particulate induces pulmonary and systemic inflammation in rats without impairing endothelial function ex vivo or in vivo. Particle and Fibre Toxicology, 2012, 9, 9.	2.8	46
45	Development and characterization of rodent cardiac phantoms: comparison with in vivo cardiac imaging. Magnetic Resonance Imaging, 2012, 30, 1186-1191.	1.0	7
46	Enhanced Angiogenic Capacity of Human Umbilical Vein Endothelial Cells From Women With Preeclampsia. Reproductive Sciences, 2011, 18, 374-382.	1.1	11
47	Immunolocalisation and activity of DDAH I and II in the heart and modification post-myocardial infarction. Acta Histochemica, 2010, 112, 413-423.	0.9	16
48	Improved heart function follows enhanced inflammatory cell recruitment and angiogenesis in 111²HSD1-deficient mice post-MI. Cardiovascular Research, 2010, 88, 159-167.	1.8	61
49	Endothelial cell-specific ET _B receptor knockout: autoradiographic and histological characterisation and crucial role in the clearance of endothelin-1This article is one of a selection of papers published in the two-part special issue entitled 20 Years of Endothelin Research Canadian Journal of Physiology and Pharmacology, 2010, 88, 644-651.	0.7	61
50	Run for your life: exercise, oxidative stress and the ageing endothelium. Journal of Physiology, 2009, 587, 4137-4138.	1.3	7
51	Oestrogen-mediated cardioprotection following ischaemia and reperfusion is mimicked by an oestrogen receptor (ER)α agonist and unaffected by an ERβ antagonist. Journal of Endocrinology, 2008, 197, 493-501.	1.2	46
52	Cardiovascular risk in women: the impact of hormone replacement therapy and prospects for new therapeutic approaches. Expert Opinion on Pharmacotherapy, 2007, 8, 279-288.	0.9	20
53	Medroxyprogesterone acetate inhibits the cardioprotective effect of estrogen in experimental ischemia-reperfusion injury. Menopause, 2006, 13, 80-86.	0.8	20
54	Targeting C-reactive protein for the treatment of cardiovascular disease. Nature, 2006, 440, 1217-1221.	13.7	621

#	Article	IF	CITATIONS
55	Deletion of Endothelial Cell Endothelin B Receptors Does Not Affect Blood Pressure or Sensitivity to Salt. Hypertension, 2006, 48, 286-293.	1.3	92
56	Preventing local regeneration of glucocorticoids by 11Â-hydroxysteroid dehydrogenase type 1 enhances angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12165-12170.	3.3	109
57	The Aldosterone Synthase (CYP11B2) and 11β-Hydroxylase (CYP11B1) Genes Are Not Expressed in the Rat Heart. Endocrinology, 2005, 146, 5287-5293.	1.4	50
58	Influence of scanning frequency and ultrasonic contrast agent on reproducibility of left ventricular measurements in the mouse. Journal of the American Society of Echocardiography, 2005, 18, 155-162.	1.2	6
59	Endothelin-1[1-31] is Not Elevated in Men with Chronic Heart Failure. Journal of Cardiovascular Pharmacology, 2004, 44, S96-S99.	0.8	6
60	Sarafotoxin 6c (S6c) Reduces Infarct Size and Preserves mRNA for the ETB Receptor in the Ischemic/Reperfused Myocardium of Anesthetized Rats. Journal of Cardiovascular Pharmacology, 2004, 44, 148-154.	0.8	13
61	Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO Journal, 2003, 22, 4666-4676.	3.5	166
62	Investigation of the Endothelin System in Experimental Heart Failure. , 2002, 206, 217-227.		2
63	Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries. British Journal of Pharmacology, 2001, 133, 902-908.	2.7	23
64	Oestrogen and the cardiovascular system: the good, the bad and the puzzling. Trends in Pharmacological Sciences, 2001, 22, 152-156.	4.0	40
65	Human urotensin II increases coronary perfusion pressure in the isolated rat heart. Life Sciences, 2001, 69, 175-180.	2.0	44
66	Constriction to ETB receptor agonists, BQ-3020 and sarafotoxin S6c, in human resistance and capacitance vessels in vivo. British Journal of Clinical Pharmacology, 2000, 50, 27-30.	1.1	11
67	Localization and function of ET-1 and ET receptors in small arteries post-myocardial infarction: Upregulation of smooth muscle ETB receptors that modulate contraction. British Journal of Pharmacology, 2000, 130, 1735-1744.	2.7	15
68	Inducible nitric oxide synthase-derived superoxide contributes to hypereactivity in small mesenteric arteries from a rat model of chronic heart failure. British Journal of Pharmacology, 2000, 131, 29-36.	2.7	36
69	Functional heterogeneity of large and small resistance arteries isolated from biopsies of subcutaneous fat. General Pharmacology, 2000, 35, 119-127.	0.7	3
70	Regulation of the Myocardial Endothelin System by Angiotensin-II and Losartan. Journal of Cardiovascular Pharmacology, 2000, 36, S144-S147.	0.8	1
71	Systemic Blockade of the Endothelin-B Receptor Increases Peripheral Vascular Resistance in Healthy Men. Hypertension, 1999, 33, 581-585.	1.3	141
72	Nitric oxide and gall-bladder motor function. Alimentary Pharmacology and Therapeutics, 1998, 12, 425-432.	1.9	15

#	Article	IF	CITATIONS
73	Differential Effects of Angiotensin II on Cardiac Cell Proliferation and Intramyocardial Perivascular Fibrosis In Vivo. Circulation, 1998, 98, 2765-2773.	1.6	161
74	A Nonradioactive Method for Localization of Endothelin Receptor mRNA In Situ. Journal of Cardiovascular Pharmacology, 1998, 31, S443-S446.	0.8	6
75	Therapeutic Potential of S-Nitrosothiols as Nitric Oxide Donor Drugs. Scottish Medical Journal, 1997, 42, 88-89.	0.7	8
76	Activation of endothelin ETA receptors masks the constrictor role of endothelin ETB receptors in rat isolated small mesenteric arteries. British Journal of Pharmacology, 1997, 120, 1376-1382.	2.7	93
77	Prolonged effect of a novel S-nitrosated glyco-amino acid in endothelium-denuded rat femoral arteries: potential as a slow release nitric oxide donor drug. British Journal of Pharmacology, 1997, 122, 1617-1624.	2.7	39
78	Endothelin Antagonists: Novel Treatments for Hypertension?. , 1997, , 91-107.		0
79	Vascular Biology of the Endothelin System. , 1997, , 71-90.		0
80	The endothelin system and its potential as a therapeutic target in cardiovascular disease. , 1996, 72, 109-148.		151
81	Vasodilator Effects of Endothelin-Converting Enzyme Inhibition and Endothelin ET A Receptor Blockade in Chronic Heart Failure Patients Treated With ACE Inhibitors. Circulation, 1996, 94, 2131-2137.	1.6	148
82	Are There Different ETB Receptors Mediating Constriction and Relaxation?. Journal of Cardiovascular Pharmacology, 1995, 26, S262-264.	0.8	56
83	Endothelin Receptors That Modulate Contraction of the Rat Fundus. Journal of Cardiovascular Pharmacology, 1995, 26, S126-129.	0.8	4
84	The Role of Endothelin in Experimental Cerebral Vasospasm. Neurosurgery, 1995, 37, 78-86.	0.6	127
85	Forearm Vasoconstriction to Endothelin-1 Is Mediated by ETA and ETB Receptors In Vivo in Humans. Journal of Cardiovascular Pharmacology, 1995, 26, S40-43.	0.8	20
86	Forearm Vasoconstriction to Endothelin-1 Is Mediated by ETA and ETB Receptors In Vivo in Humans. Journal of Cardiovascular Pharmacology, 1995, 26, S40-43.	0.8	1
87	Are There Different ETB Receptors Mediating Constriction and Relaxation?. Journal of Cardiovascular Pharmacology, 1995, 26, S262-264.	0.8	3
88	The Role of Endothelin in Experimental Cerebral Vasospasm. Neurosurgery, 1995, 37, 78???86.	0.6	6
89	Structural changes and cyclic GMP content of the aorta after calcium antagonism or angiotensin converting enzyme inhibition in renovascular hypertensive rats. Journal of Hypertension, 1995, 13, 731-7.	0.3	2
90	Endothelin receptors that modulate contraction of the rat fundus. Journal of Cardiovascular Pharmacology, 1995, 26 Suppl 3, S126-9.	0.8	0

#	Article	IF	CITATIONS
91	Are there different ETB receptors mediating constriction and relaxation?. Journal of Cardiovascular Pharmacology, 1995, 26 Suppl 3, S262-4.	0.8	13
92	Forearm vasoconstriction to endothelin-1 is mediated by ETA and ETB receptors in vivo in humans. Journal of Cardiovascular Pharmacology, 1995, 26 Suppl 3, S40-3.	0.8	8
93	Characterization of endothelin receptors mediating contraction of rabbit saphenous vein. American Journal of Physiology - Heart and Circulatory Physiology, 1994, 266, H959-H966.	1.5	15
94	Increased vascular responsiveness to norepinephrine in rats with heart failure is endothelium dependent. Dissociation of basal and stimulated nitric oxide release Circulation, 1994, 89, 393-401.	1.6	62
95	Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. Journal of Pharmacology and Experimental Therapeutics, 1994, 270, 228-35.	1.3	497
96	Pathophysiological role of endothelin revealed by the first orally active endothelin receptor antagonist. Nature, 1993, 365, 759-761.	13.7	521
97	Dependence of endotoxinâ€induced vascular hyporeactivity on extracellular <scp>l</scp> â€arginine. British Journal of Pharmacology, 1993, 108, 38-43.	2.7	80
98	Effects of calcium channel blockade on the aortic intima in spontaneously hypertensive rats Hypertension, 1993, 22, 569-576.	1.3	38
99	In Vivo Pharmacology of Ro 46-2005, The First Synthetic Nonpeptide Endothelin Receptor Antagonist: Implications for Endothelin Physiology. Journal of Cardiovascular Pharmacology, 1993, 22, S377-S379.	0.8	40
100	Effects of Methylene Blue on Blood Pressure and Reactivity to Norepinephrine in Endotoxemic Rats. Journal of Cardiovascular Pharmacology, 1993, 21, 926-930.	0.8	51
101	Influence of endothelium on induction of the L-arginine-nitric oxide pathway in rat aortas. American Journal of Physiology - Heart and Circulatory Physiology, 1993, 264, H1200-H1207.	1.5	13
102	Effect of dexamethasone on the onset and persistence of vascular hyporeactivity induced by E. coli lipopolysaccharide in rats. Circulatory Shock, 1993, 41, 103-12.	0.6	21
103	The endothelin ETB receptor mediates both vasodilation and vasoconstriction in vivo. Biochemical and Biophysical Research Communications, 1992, 186, 867-873.	1.0	395
104	Effect of endotoxin on circulating cyclic GMP in the rat. European Journal of Pharmacology, 1992, 212, 93-96.	1.7	22
105	Evidence that an <scp>l</scp> â€arginine/nitric oxide dependent elevation of tissue cyclic GMP content is involved in depression of vascular reactivity by endotoxin. British Journal of Pharmacology, 1991, 103, 1047-1052.	2.7	126
106	The effect of inhibitors of the <scp>l</scp> â€arginine/nitric oxide pathway on endotoxinâ€induced loss of vascular responsiveness in anaesthetized rats. British Journal of Pharmacology, 1991, 103, 1218-1224.	2.7	149
107	Inducible but not constitutive production of nitric oxide by vascular smooth muscle cells. European Journal of Pharmacology, 1991, 200, 375-376.	1.7	93
108	Endotoxin-induced impairment of vasodepressor responses in the pithed rat. European Journal of Pharmacology, 1991, 204, 63-70.	1.7	18

#	Article	IF	CITATIONS
109	Activation of the l-Arginine-Nitric Oxide Pathway Is Involved in Vascular Hyporeactivity Induced by Endotoxin. Journal of Cardiovascular Pharmacology, 1991, 17, S207-S212.	0.8	30
110	Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. American Journal of Physiology - Heart and Circulatory Physiology, 1990, 259, H1038-H1043.	1.5	191
111	An L-arginine-derived factor mediates endotoxin-induced vascular hyposensitivity to calcium. European Journal of Pharmacology, 1990, 191, 89-92.	1.7	30
112	Incubation with endotoxin activates the L-arginine pathway in vascular tissue. Biochemical and Biophysical Research Communications, 1990, 171, 562-568.	1.0	189
113	Investigation of the selectivity of α, βâ€methylene ATP in inhibiting vascular responses of the rat <i>in vivo</i> and <i>in vitro</i> . British Journal of Pharmacology, 1990, 99, 820-824.	2.7	13
114	Endotoxin-induced impairment of vascular reactivity in the pithed rat: role of arachidonic acid metabolites. Circulatory Shock, 1990, 31, 395-406.	0.6	25
115	Enhancement of the hypothermic response of mice to delta-9-tetrahydrocannabinol by subhypothermic doses of chlorpromazine and phentolamine. Neuropharmacology, 1987, 26, 229-235.	2.0	5