
Diego Caccavo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8666285/publications.pdf

Version: 2024-02-01

DIECO CACCANO

#	Article	IF	CITATIONS
1	A low-cost push–pull syringe pump for continuous flow applications. HardwareX, 2022, 11, e00295.	2.2	5
2	Drug release from hydrogel-based matrix systems partially coated: experiments and modeling. Journal of Drug Delivery Science and Technology, 2021, 61, 102146.	3.0	10
3	Dynamometric measurements of hydrogels' mechanical spectra. Journal of Applied Polymer Science, 2021, 138, 50702.	2.6	1
4	Gelation process of carboxymethyl chitosan-zinc supramolecular hydrogel studied with fluorescence imaging and mathematical modelling. International Journal of Pharmaceutics, 2021, 605, 120804.	5.2	6
5	Nanoliposomes in polymeric granules: Novel process strategy to produce stable and versatile delivery systems. Journal of Drug Delivery Science and Technology, 2020, 59, 101878.	3.0	2
6	Mechanics and drug release from poroviscoelastic hydrogels: Experiments and modeling. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 299-306.	4.3	8
7	Engineering approaches for drug delivery systems production and characterization. International Journal of Pharmaceutics, 2020, 581, 119267.	5.2	8
8	Polymeric and lipid-based systems for controlled drug release: an engineering point of view. , 2019, , 267-304.		12
9	An overview on the mathematical modeling of hydrogels' behavior for drug delivery systems. International Journal of Pharmaceutics, 2019, 560, 175-190.	5.2	90
10	Effect of binder and load solubility properties on HPMC granules produced by wet granulation process. Journal of Drug Delivery Science and Technology, 2019, 49, 513-520.	3.0	6
11	Hydrogels: experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. Chemical Society Reviews, 2018, 47, 2357-2373.	38.1	172
12	HPMC granules by wet granulation process: Effect of vitamin load on physicochemical, mechanical and release properties. Carbohydrate Polymers, 2018, 181, 939-947.	10.2	17
13	Wet-granulation process: phenomenological analysis and process parameters optimization. Powder Technology, 2018, 340, 411-419.	4.2	36
14	Modeling the mechanics and the transport phenomena in hydrogels. Computer Aided Chemical Engineering, 2018, 42, 357-383.	0.5	10
15	Engineering approaches in siRNA delivery. International Journal of Pharmaceutics, 2017, 525, 343-358.	5.2	21
16	PoroViscoElastic model to describe hydrogels' behavior. Materials Science and Engineering C, 2017, 76, 102-113.	7.3	37
17	Mathematical modelling of the drug release from an ensemble of coated pellets. British Journal of Pharmacology, 2017, 174, 1797-1809.	5.4	20
18	Effects of HPMC substituent pattern on water up-take, polymer and drug release: An experimental and modelling study. International Journal of Pharmaceutics, 2017, 528, 705-713.	5.2	29

DIEGO CACCAVO

#	Article	IF	CITATIONS
19	Determination of the release mechanism of Theophylline from pellets coated with Surelease ® —A water dispersion of ethyl cellulose. International Journal of Pharmaceutics, 2017, 528, 345-353.	5.2	20
20	Mechanics and transport phenomena in agarose-based hydrogels studied by compression-relaxation tests. Carbohydrate Polymers, 2017, 167, 136-144.	10.2	28
21	HPMC-based granules for prolonged release of phytostrengtheners in agriculture. Chemical Engineering Communications, 2017, 204, 1333-1340.	2.6	3
22	Modeling the modified drug release from curved shape drug delivery systems – Dome Matrix®. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 121, 24-31.	4.3	16
23	Modeling of the Behavior of Natural Polysaccharides Hydrogels for Bio-pharma Applications. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	0
24	An Engineering Point of View on the Use of the Hydrogels for Pharmaceutical and Biomedical Applications. , 2016, , .		2
25	Modeling capillary formation in calcium and copper alginate gels. Materials Science and Engineering C, 2016, 58, 442-449.	7.3	18
26	Drug delivery from hydrogels: A general framework for the release modeling. Current Drug Delivery, 2016, 13, 1-1.	1.6	13
27	Chemical Engineering in the "BIO―world. Current Drug Delivery, 2016, 13, 1-1.	1.6	4
28	Understanding the adhesion phenomena in carbohydrate-hydrogel-based systems: Water up-take, swelling and elastic detachment. Carbohydrate Polymers, 2015, 131, 41-49.	10.2	14
29	Controlled drug release from hydrogel-based matrices: Experiments and modeling. International Journal of Pharmaceutics, 2015, 486, 144-152.	5.2	59
30	Modeling the Drug Release from Hydrogel-Based Matrices. Molecular Pharmaceutics, 2015, 12, 474-483.	4.6	84
31	Swellable Hydrogel-based Systems for Controlled Drug Delivery. , 0, , .		22

Inside the Phenomenological Aspects of Wet Granulation: Role of Process Parameters., 0,,.

1