Mark L Latash

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8666098/mark-l-latash-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16,488 65 408 109 h-index g-index citations papers 7.19 420 17,954 2.5 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
408	Human Movement: In Search of Borderlands Between Philosophy and Physics. <i>Kinesiology Review</i> , 2022 , 1-12	2	
407	Unintentional force drifts across the human fingers: implications for the neural control of finger tasks <i>Experimental Brain Research</i> , 2022 , 240, 751	2.3	1
406	Recent Advances in the Neural Control of Movements: Lessons for Functional Recovery <i>Physical Therapy Research</i> , 2022 , 25, 1-11	1.3	O
405	Optimality, Stability, and Agility of Human Movement: New Optimality Criterion and Trade-Offs <i>Motor Control</i> , 2022 , 1-37	1.3	1
404	Effects of hand muscle function and dominance on intra-muscle synergies <i>Human Movement Science</i> , 2022 , 82, 102936	2.4	1
403	Understanding and Synergy: A Single Concept at Different Levels of Analysis?. <i>Frontiers in Systems Neuroscience</i> , 2021 , 15, 735406	3.5	2
402	Unintentional Force Drifts as Consequences of Indirect Force Control with Spatial Referent Coordinates. <i>Neuroscience</i> , 2021 ,	3.9	2
401	Reciprocal and coactivation commands at the level of individual motor units in an extrinsic finger flexor-extensor muscle pair. <i>Experimental Brain Research</i> , 2021 , 1	2.3	3
400	Biomechanics of Vertical Posture and Control with Referent Joint Configurations. <i>Journal of Motor Behavior</i> , 2021 , 53, 72-82	1.4	8
399	Finger Force Matching and Verbal Reports: Testing Predictions of the Iso-Perceptual Manifold Concept. <i>Journal of Motor Behavior</i> , 2021 , 53, 598-610	1.4	8
398	Distortions of the Efferent Copy during Force Perception: A Study of Force Drifts and Effects of Muscle Vibration. <i>Neuroscience</i> , 2021 , 457, 139-154	3.9	10
397	Bernstein's Philosophy of Time: An Unknown Manuscript by Nikolai Bernstein (1949). <i>Motor Control</i> , 2021 , 25, 315-336	1.3	1
396	Efference copy in kinesthetic perception: a copy of what is it?. <i>Journal of Neurophysiology</i> , 2021 , 125, 1079-1094	3.2	6
395	Postural Adjustments during Interactions with an Active Partner. <i>Neuroscience</i> , 2021 , 463, 14-29	3.9	2
394	Synergies at the level of motor units in single-finger and multi-finger tasks. <i>Experimental Brain Research</i> , 2021 , 239, 2905-2923	2.3	6
393	Laws of nature that define biological action and perception. <i>Physics of Life Reviews</i> , 2021 , 36, 47-67	2.1	22
392	Synergic control of a single muscle: The example of flexor digitorum superficialis. <i>Journal of Physiology</i> , 2021 , 599, 1261-1279	3.9	17

(2019-2021)

391	Stability of Action and Kinesthetic Perception in Parkinson's Disease. <i>Journal of Human Kinetics</i> , 2021 , 76, 145-159	2.6	О
390	Production and Perception of Intentional and Unintentional Actions. <i>Journal of Human Kinetics</i> , 2021 , 76, 51-66	2.6	1
389	Motor Control: A Young Field with Many Facets (Introduction to the Special Issue). <i>Journal of Human Kinetics</i> , 2021 , 76, 5-8	2.6	
388	One more time about motor (and non-motor) synergies. Experimental Brain Research, 2021, 239, 2951-2	29 <u>6</u> 7	5
387	Motor Control: Creating a Natural Science of Biological Movement. Kinesiology Review, 2021, 10, 257-2	6 <u>3</u>	1
386	Optimality and stability of human behavior: Reply to comments on "Laws of nature that define biological action and perception". <i>Physics of Life Reviews</i> , 2021 , 38, 145-149	2.1	
385	The Nature of Finger Enslaving: New Results and Their Implications. <i>Motor Control</i> , 2021 , 25, 680-703	1.3	3
384	Perturbation-induced fast drifts in finger enslaving. Experimental Brain Research, 2021, 239, 891-902	2.3	4
383	What do people match when they try to match force? Analysis at the level of hypothetical control variables. <i>Experimental Brain Research</i> , 2020 , 238, 1885-1901	2.3	8
382	Perceptual and Motor Effects of Muscle Co-activation in a Force Production Task. <i>Neuroscience</i> , 2020 , 437, 34-44	3.9	15
381	Performance-Stabilizing Synergies in a Complex Motor Skill: Analysis Based on the Uncontrolled Manifold Hypothesis. <i>Motor Control</i> , 2020 , 24, 238-252	1.3	4
380	On Primitives in Motor Control. <i>Motor Control</i> , 2020 , 24, 318-346	1.3	16
379	Synergic control of action in levodopa-nalle Parkinson's disease patients: I. Multi-finger interaction and coordination. <i>Experimental Brain Research</i> , 2020 , 238, 229-245	2.3	4
378	On the origin of finger enslaving: control with referent coordinates and effects of visual feedback. Journal of Neurophysiology, 2020 , 124, 1625-1636	3.2	10
377	Synergic control of action in levodopa-naMe Parkinson's disease patients: II. Multi-muscle synergies stabilizing vertical posture. <i>Experimental Brain Research</i> , 2020 , 238, 2931-2945	2.3	4
376	Finger interdependence and unintentional force drifts: Lessons from manipulations of visual feedback. <i>Human Movement Science</i> , 2020 , 74, 102714	2.4	8
375	Beyond rambling and trembling: effects of visual feedback on slow postural drift. <i>Experimental Brain Research</i> , 2019 , 237, 865-871	2.3	8
374	Exploring the Concept of Iso-perceptual Manifold (IPM): A Study of Finger Force-Matching Tasks. <i>Neuroscience</i> , 2019 , 401, 130-141	3.9	12

373	Preparation to a quick whole-body action: control with referent body orientation and multi-muscle synergies. <i>Experimental Brain Research</i> , 2019 , 237, 1361-1374	2.3	2
372	Slobodan Jaric (1951-2018). <i>Motor Control</i> , 2019 , 23, 145-148	1.3	
371	Case Studies in Neuroscience: The central and somatosensory contributions to finger interdependence and coordination: lessons from a study of a "deafferented person". <i>Journal of Neurophysiology</i> , 2019 , 121, 2083-2087	3.2	11
370	Sloppy, But Acceptable, Control of Biological Movement: Algorithm-Based Stabilization of Subspaces in Abundant Spaces. <i>Journal of Human Kinetics</i> , 2019 , 67, 49-72	2.6	6
369	Human Movements: Synergies, Stability, and Agility. Springer Tracts in Advanced Robotics, 2019, 135-154	40.5	4
368	Quantitative analysis of multi-element synergy stabilizing performance: comparison of three methods with respect to their use in clinical studies. <i>Experimental Brain Research</i> , 2019 , 237, 453-465	2.3	9
367	Effects of Voluntary Agonist-Antagonist Coactivation on Stability of Vertical Posture. <i>Motor Control</i> , 2019 , 23, 304-326	1.3	16
366	Individual preferences in motor coordination seen across the two hands: relations to movement stability and optimality. <i>Experimental Brain Research</i> , 2019 , 237, 1-13	2.3	11
365	Abundant Degrees of Freedom Are Not a Problem. <i>Kinesiology Review</i> , 2018 , 7, 64-72	2	4
364	Performance drifts in two-finger cyclical force production tasks performed by one and two actors. <i>Experimental Brain Research</i> , 2018 , 236, 779-794	2.3	0
363	Stability of Kinesthetic Perception in Efferent-Afferent Spaces: The Concept of Iso-perceptual Manifold. <i>Neuroscience</i> , 2018 , 372, 97-113	3.9	14
362	Stability of steady hand force production explored across spaces and methods of analysis. <i>Experimental Brain Research</i> , 2018 , 236, 1545-1562	2.3	14
361	Stability of vertical posture explored with unexpected mechanical perturbations: synergy indices and motor equivalence. <i>Experimental Brain Research</i> , 2018 , 236, 1501-1517	2.3	9
360	Systemic effects of deep brain stimulation on synergic control in Parkinson's disease. <i>Clinical Neurophysiology</i> , 2018 , 129, 1320-1332	4.3	13
359	Multi-finger synergies and the muscular apparatus of the hand. <i>Experimental Brain Research</i> , 2018 , 236, 1383-1393	2.3	12
358	Systematic, Unintended Drifts in the Cyclic Force Produced with the Fingertips. <i>Motor Control</i> , 2018 , 22, 82-99	1.3	7
357	Force illusions and drifts observed during muscle vibration. Journal of Neurophysiology, 2018, 119, 326-	3 3.6	19
356	Synergies and Motor Equivalence in Voluntary Sway Tasks: The Effects of Visual and Mechanical Constraints. <i>Journal of Motor Behavior</i> , 2018 , 50, 492-509	1.4	7

355	Muscle coactivation: definitions, mechanisms, and functions. <i>Journal of Neurophysiology</i> , 2018 , 120, 88-	1 <u>9.4</u>	63
354	Stability of hand force production. II. Ascending and descending synergies. <i>Journal of Neurophysiology</i> , 2018 , 120, 1045-1060	3.2	19
353	Dopaminergic modulation of multi-muscle synergies in postural tasks performed by patients with Parkinson's disease. <i>Journal of Electromyography and Kinesiology</i> , 2017 , 33, 20-26	2.5	25
352	Effects of visual feedback and memory on unintentional drifts in performance during finger-pressing tasks. <i>Experimental Brain Research</i> , 2017 , 235, 1149-1162	2.3	19
351	Unintentional drifts during quiet stance and voluntary body sway. <i>Experimental Brain Research</i> , 2017 , 235, 2301-2316	2.3	12
350	Motor equivalence and structure of variance: multi-muscle postural synergies in Parkinson's disease. <i>Experimental Brain Research</i> , 2017 , 235, 2243-2258	2.3	23
349	Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model. <i>Neuroscience</i> , 2017 , 350, 94-109	3.9	2
348	Stability of hand force production. I. Hand level control variables and multifinger synergies. <i>Journal of Neurophysiology</i> , 2017 , 118, 3152-3164	3.2	39
347	Anticipatory postural adjustments and anticipatory synergy adjustments: preparing to a postural perturbation with predictable and unpredictable direction. <i>Experimental Brain Research</i> , 2017 , 235, 713	- 7 30	36
346	Optimality and stability of intentional and unintentional actions: II. Motor equivalence and structure of variance. <i>Experimental Brain Research</i> , 2017 , 235, 457-470	2.3	8
345	Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance. <i>Experimental Brain Research</i> , 2017 , 235, 481-496	2.3	20
344	The synergic control of multi-finger force production: stability of explicit and implicit task components. <i>Experimental Brain Research</i> , 2017 , 235, 1-14	2.3	17
343	Changes in Multidigit Synergies and Their Feed-Forward Adjustments in Multiple Sclerosis. <i>Journal of Motor Behavior</i> , 2017 , 49, 218-228	1.4	17
342	Biological Movement and Laws of Physics. <i>Motor Control</i> , 2017 , 21, 327-344	1.3	33
341	Unsteady steady-states: central causes of unintentional force drift. <i>Experimental Brain Research</i> , 2016 , 234, 3597-3611	2.3	38
340	The nature of constant and cyclic force production: unintentional force-drift characteristics. <i>Experimental Brain Research</i> , 2016 , 234, 197-208	2.3	17
339	Analytical Inverse Optimization in Two-Hand Prehensile Tasks. Journal of Motor Behavior, 2016 , 48, 424	-3:44	1
338	Finger force changes in the absence of visual feedback in patients with Parkinson's disease. <i>Clinical Neurophysiology</i> , 2016 , 127, 684-692	4.3	22

337	Impaired synergic control of posture in Parkinson's patients without postural instability. <i>Gait and Posture</i> , 2016 , 44, 209-15	2.6	43
336	Effects of unilateral stroke on multi-finger synergies and their feed-forward adjustments. <i>Neuroscience</i> , 2016 , 319, 194-205	3.9	32
335	Unintentional movements induced by sequential transient perturbations in a multi-joint positional task. <i>Human Movement Science</i> , 2016 , 46, 1-9	2.4	2
334	Postural Preparation to Stepping: Coupled Center of Pressure Shifts in the Anterior-Posterior and Medio-Lateral Directions. <i>Journal of Human Kinetics</i> , 2016 , 54, 5-14	2.6	7
333	Equilibrium-Point Hypothesis 2016 , 247-273		
332	Joint Torque 2016 , 3-24		1
331	Redundancy and Abundance 2016 , 177-204		
330	Grasping 2016 , 335-363		
329	Motor Synergy 2016 , 205-245		
328	Posture 2016 , 305-333		O
328 327	Posture 2016 , 305-333 Motor Program 2016 , 275-301		Ο
		4.4	o 30
327	Motor Program 2016 , 275-301 Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic	4.4	
327	Motor Program 2016, 275-301 Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders. <i>NeuroToxicology</i> , 2016, 56, 76-85 Biomechanics as a window into the neural control of movement. <i>Journal of Human Kinetics</i> , 2016,		30
327 326 325	Motor Program 2016, 275-301 Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders. <i>NeuroToxicology</i> , 2016, 56, 76-85 Biomechanics as a window into the neural control of movement. <i>Journal of Human Kinetics</i> , 2016, 52, 7-20 On the nature of unintentional action: a study of force/moment drifts during multifinger tasks.	2.6	30 9
327 326 325 324	Motor Program 2016, 275-301 Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders. NeuroToxicology, 2016, 56, 76-85 Biomechanics as a window into the neural control of movement. Journal of Human Kinetics, 2016, 52, 7-20 On the nature of unintentional action: a study of force/moment drifts during multifinger tasks. Journal of Neurophysiology, 2016, 116, 698-708	2.6	30 9 33
327 326 325 324 323	Motor Program 2016, 275-301 Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders. NeuroToxicology, 2016, 56, 76-85 Biomechanics as a window into the neural control of movement. Journal of Human Kinetics, 2016, 52, 7-20 On the nature of unintentional action: a study of force/moment drifts during multifinger tasks. Journal of Neurophysiology, 2016, 116, 698-708 Fifty Years of Physics of Living Systems. Advances in Experimental Medicine and Biology, 2016, 957, 81-10. A physicist's view on biological synergies: Comment on "Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands" by Marco Santello et	2.6 3.2 03.6	30 9 33 2

(2014-2015)

319	Characteristics of unintentional movements by a multijoint effector. <i>Journal of Motor Behavior</i> , 2015 , 47, 352-61	1.4	7	
318	Motor equivalence during multi-finger accurate force production. <i>Experimental Brain Research</i> , 2015 , 233, 487-502	2.3	27	
317	Processes underlying unintentional finger-force changes in the absence of visual feedback. <i>Experimental Brain Research</i> , 2015 , 233, 711-21	2.3	51	
316	Challenging gait leads to stronger lower-limb kinematic synergies: The effects of walking within a more narrow pathway. <i>Neuroscience Letters</i> , 2015 , 600, 110-4	3.3	22	
315	Force-stabilizing synergies in motor tasks involving two actors. <i>Experimental Brain Research</i> , 2015 , 233, 2935-49	2.3	13	
314	Task-specific stability of multifinger steady-state action. <i>Journal of Motor Behavior</i> , 2015 , 47, 365-77	1.4	11	
313	Positional errors introduced by transient perturbations applied to a multi-joint limb. <i>Neuroscience Letters</i> , 2015 , 595, 104-7	3.3	3	
312	Unintentional changes in the apparent stiffness of the multi-joint limb. <i>Experimental Brain Research</i> , 2015 , 233, 2989-3004	2.3	6	
311	Learning to combine high variability with high precision: lack of transfer to a different task. <i>Journal of Motor Behavior</i> , 2015 , 47, 153-65	1.4	9	
310	Intra-Personal and Inter-Personal Kinetic Synergies During Jumping. <i>Journal of Human Kinetics</i> , 2015 , 49, 75-88	2.6	5	
309	The Hand: Shall We Ever Understand How it Works?. <i>Motor Control</i> , 2015 , 19, 108-26	1.3	3	
308	Neural control of movement stability: Lessons from studies of neurological patients. <i>Neuroscience</i> , 2015 , 301, 39-48	3.9	81	
307	Prehension synergies and hand function in early-stage Parkinson's disease. <i>Experimental Brain Research</i> , 2015 , 233, 425-40	2.3	35	
306	Intentional and unintentional multi-joint movements: their nature and structure of variance. <i>Neuroscience</i> , 2015 , 289, 181-93	3.9	21	
305	Bernstein Desired Future and Physics of Human Movement. <i>Cognitive Systems Monographs</i> , 2015 , 287-299	0.2	4	
304	Finger enslaving in the dominant and non-dominant hand. Human Movement Science, 2014, 33, 185-93	2.4	11	
303	Mechanical properties of the human hand digits: age-related differences. <i>Clinical Biomechanics</i> , 2014 , 29, 129-37	2.2	9	
302	Enslaving in a serial chain: interactions between grip force and hand force in isometric tasks. Experimental Brain Research, 2014 , 232, 775-87	2.3	13	

301	An apparent contradiction: increasing variability to achieve greater precision?. <i>Experimental Brain Research</i> , 2014 , 232, 403-13	2.3	43
300	Factors affecting grip force: anatomy, mechanics, and referent configurations. <i>Experimental Brain Research</i> , 2014 , 232, 1219-31	2.3	36
299	Dopaminergic modulation of motor coordinaton in Parkinson's disease. <i>Parkinsonism and Related Disorders</i> , 2014 , 20, 64-8	3.6	32
298	Task-specific stability in muscle activation space during unintentional movements. <i>Experimental Brain Research</i> , 2014 , 232, 3645-58	2.3	6
297	Postural sway and perceived comfort in pointing tasks. <i>Neuroscience Letters</i> , 2014 , 569, 18-22	3.3	3
296	Stability of multifinger action in different state spaces. <i>Journal of Neurophysiology</i> , 2014 , 112, 3209-18	3.2	30
295	Prehension synergies during fatigue of a single digit: adaptations in control with referent configurations. <i>Motor Control</i> , 2014 , 18, 278-96	1.3	6
294	Equifinality and its violations in a redundant system: control with referent configurations in a multi-joint positional task. <i>Motor Control</i> , 2014 , 18, 405-24	1.3	22
293	Inter-limb force coupling is resistant to distorted visual feedback in chronic hemiparetic stroke. Journal of Rehabilitation Medicine, 2014 , 46, 206-11	3.4	6
292	Internal forces during static prehension: effects of age and grasp configuration. <i>Journal of Motor Behavior</i> , 2014 , 46, 211-22	1.4	6
291	Unintentional movements produced by back-coupling between the actual and referent body configurations: violations of equifinality in multi-joint positional tasks. <i>Experimental Brain Research</i> , 2014 , 232, 3847-59	2.3	32
290	The effects of practice on coordination. Exercise and Sport Sciences Reviews, 2014, 42, 37-42	6.7	33
289	Stabilization of cat paw trajectory during locomotion. <i>Journal of Neurophysiology</i> , 2014 , 112, 1376-91	3.2	16
288	Motor control: on the way to physics of living systems. <i>Advances in Experimental Medicine and Biology</i> , 2014 , 826, 1-16	3.6	5
287	The effects of aging on the rambling and trembling components of postural sway: effects of motor and sensory challenges. <i>Gait and Posture</i> , 2013 , 38, 637-42	2.6	21
286	Effects of muscle vibration on multi-finger interaction and coordination. <i>Experimental Brain Research</i> , 2013 , 229, 103-11	2.3	13
285	Grip-force modulation in multi-finger prehension during wrist flexion and extension. <i>Experimental Brain Research</i> , 2013 , 227, 509-22	2.3	20
284	Bilateral synergies in foot force production tasks. <i>Experimental Brain Research</i> , 2013 , 227, 121-30	2.3	13

(2012-2013)

283	Improving finger coordination in young and elderly persons. <i>Experimental Brain Research</i> , 2013 , 226, 273-83	2.3	43	
282	Adaptations to fatigue of a single digit violate the principle of superposition in a multi-finger static prehension task. <i>Experimental Brain Research</i> , 2013 , 225, 589-602	2.3	4	
281	End-state comfort and joint configuration variance during reaching. <i>Experimental Brain Research</i> , 2013 , 225, 431-42	2.3	31	
280	Anticipatory synergy adjustments: preparing a quick action in an unknown direction. <i>Experimental Brain Research</i> , 2013 , 226, 565-73	2.3	23	
279	Effects of Parkinson's disease on optimization and structure of variance in multi-finger tasks. <i>Experimental Brain Research</i> , 2013 , 231, 51-63	2.3	22	
278	Control of finger force vectors with changes in fingertip referent coordinates. <i>Journal of Motor Behavior</i> , 2013 , 45, 15-20	1.4	5	
277	Fitts' Law in early postural adjustments. <i>Neuroscience</i> , 2013 , 231, 61-9	3.9	31	
276	Effects of olivo-ponto-cerebellar atrophy (OPCA) on finger interaction and coordination. <i>Clinical Neurophysiology</i> , 2013 , 124, 991-8	4.3	51	
275	The effects of age on stabilization of the mediolateral trajectory of the swing foot. <i>Gait and Posture</i> , 2013 , 38, 923-8	2.6	43	
274	Changes in the flexor digitorum profundus tendon geometry in the carpal tunnel due to force production and posture of metacarpophalangeal joint of the index finger: an MRI study. <i>Clinical Biomechanics</i> , 2013 , 28, 157-63	2.2	4	
273	Contrasting effects of fatigue on multifinger coordination in young and older adults. <i>Journal of Applied Physiology</i> , 2013 , 115, 456-67	3.7	10	
272	Optimization and variability of motor behavior in multifinger tasks: what variables does the brain use?. <i>Journal of Motor Behavior</i> , 2013 , 45, 289-305	1.4	7	
271	Motor equivalence (ME) during reaching: is ME observable at the muscle level?. <i>Motor Control</i> , 2013 , 17, 145-75	1.3	32	
270	Is power grasping contact continuous or discrete?. Journal of Applied Biomechanics, 2013, 29, 554-62	1.2	4	
269	Comparison of interfinger connection matrix computation techniques. <i>Journal of Applied Biomechanics</i> , 2013 , 29, 525-34	1.2	4	
268	Equifinality and its violations in a redundant system: multifinger accurate force production. <i>Journal of Neurophysiology</i> , 2013 , 110, 1965-73	3.2	41	
267	Static prehension of a horizontally oriented object in three dimensions. <i>Experimental Brain Research</i> , 2012 , 216, 249-61	2.3	7	
266	Optimality versus variability: effect of fatigue in multi-finger redundant tasks. <i>Experimental Brain Research</i> , 2012 , 216, 591-607	2.3	24	

265	The bliss (not the problem) of motor abundance (not redundancy). <i>Experimental Brain Research</i> , 2012 , 217, 1-5	2.3	341
264	Tangential finger forces use mechanical advantage during static grasping. <i>Journal of Applied Biomechanics</i> , 2012 , 28, 78-84	1.2	9
263	Reconstruction of the unknown optimization cost functions from experimental recordings during static multi-finger prehension. <i>Motor Control</i> , 2012 , 16, 195-228	1.3	10
262	Reproducibility and variability of the cost functions reconstructed from experimental recordings in multifinger prehension. <i>Journal of Motor Behavior</i> , 2012 , 44, 69-85	1.4	8
261	Practicing elements versus practicing coordination: changes in the structure of variance. <i>Journal of Motor Behavior</i> , 2012 , 44, 471-8	1.4	39
26 0	Stability control of grasping objects with different locations of center of mass and rotational inertia. <i>Journal of Motor Behavior</i> , 2012 , 44, 169-78	1.4	10
259	Movements that are both variable and optimal. <i>Journal of Human Kinetics</i> , 2012 , 34, 5-13	2.6	21
258	Early postural adjustments in preparation to whole-body voluntary sway. <i>Journal of Electromyography and Kinesiology</i> , 2012 , 22, 110-6	2.5	26
257	Radial force distribution changes associated with tangential force production in cylindrical grasping, and the importance of anatomical registration. <i>Journal of Biomechanics</i> , 2012 , 45, 218-24	2.9	11
256	Effects of the index finger position and force production on the flexor digitorum superficialis moment arms at the metacarpophalangeal joints - a magnetic resonance imaging study. <i>Clinical Biomechanics</i> , 2012 , 27, 453-9	2.2	5
255	Early and late components of feed-forward postural adjustments to predictable perturbations. <i>Clinical Neurophysiology</i> , 2012 , 123, 1016-26	4.3	38
254	Effects of fatigue on synergies in a hierarchical system. <i>Human Movement Science</i> , 2012 , 31, 1379-98	2.4	12
253	Control with muscle activations 2012 , 93-111		2
252	Exemplary behaviors 2012 , 211-259		3
251	Effects of practice and adaptation 2012 , 261-283		2
250	Forces and moments generated by the human arm: variability and control. <i>Experimental Brain Research</i> , 2012 , 223, 159-75	2.3	14
249	Multi-digit coordination during lifting a horizontally oriented object: synergies control with referent configurations. <i>Experimental Brain Research</i> , 2012 , 222, 277-90	2.3	10
248	Age effects on rotational hand action. <i>Human Movement Science</i> , 2012 , 31, 502-18	2.4	18

(2010-2012)

247	Changes in multifinger interaction and coordination in Parkinson's disease. <i>Journal of Neurophysiology</i> , 2012 , 108, 915-24	3.2	101
246	A logarithmic speed-difficulty trade-off in speech production. <i>Motor Control</i> , 2011 , 15, 52-67	1.3	2
245	Coordination of contact forces during multifinger static prehension. <i>Journal of Applied Biomechanics</i> , 2011 , 27, 87-98	1.2	3
244	Prehension of half-full and half-empty glasses: time and history effects on multi-digit coordination. <i>Experimental Brain Research</i> , 2011 , 209, 571-85	2.3	15
243	Speed-difficulty trade-off in speech: Chinese versus English. Experimental Brain Research, 2011, 211, 19	3295	1
242	Age-related changes in optimality and motor variability: an example of multifinger redundant tasks. <i>Experimental Brain Research</i> , 2011 , 212, 1-18	2.3	35
241	Two stages and three components of the postural preparation to action. <i>Experimental Brain Research</i> , 2011 , 212, 47-63	2.3	67
240	Manipulation of a fragile object by elderly individuals. <i>Experimental Brain Research</i> , 2011 , 212, 505-16	2.3	22
239	Grip forces during object manipulation: experiment, mathematical model, and validation. <i>Experimental Brain Research</i> , 2011 , 213, 125-39	2.3	20
238	Prehension synergies during smooth changes of the external torque. <i>Experimental Brain Research</i> , 2011 , 213, 493-506	2.3	9
237	Effects of muscle fatigue on multi-muscle synergies. Experimental Brain Research, 2011, 214, 335-50	2.3	29
236	Two aspects of feedforward postural control: anticipatory postural adjustments and anticipatory synergy adjustments. <i>Journal of Neurophysiology</i> , 2011 , 105, 2275-88	3.2	90
235	Finger coordination under artificial changes in finger strength feedback: a study using analytical inverse optimization. <i>Journal of Motor Behavior</i> , 2011 , 43, 229-35	1.4	11
234	Directional variability of the isometric force vector produced by the human hand in multijoint planar tasks. <i>Journal of Motor Behavior</i> , 2011 , 43, 451-63	1.4	2
233	Motor control theories and their applications. <i>Medicina (Lithuania)</i> , 2010 , 46, 382	3.1	92
232	Age-related changes in the control of finger force vectors. <i>Journal of Applied Physiology</i> , 2010 , 109, 182	273. 4 1	61
231	Motor Control: In Search of Physics of the Living Systems. <i>Journal of Human Kinetics</i> , 2010 , 24, 7-18	2.6	9
230	Adaptive increase in force variance during fatigue in tasks with low redundancy. <i>Neuroscience Letters</i> , 2010 , 485, 204-7	3.3	14

229	Fatigue and motor redundancy: adaptive increase in finger force variance in multi-finger tasks. Journal of Neurophysiology, 2010 , 103, 2990-3000	3.2	54
228	Two Archetypes of Motor Control Research. <i>Motor Control</i> , 2010 , 14, e41-e53	1.3	5
227	Motor synergies and the equilibrium-point hypothesis. <i>Motor Control</i> , 2010 , 14, 294-322	1.3	217
226	Motor abundance contributes to resolving multiple kinematic task constraints. <i>Motor Control</i> , 2010 , 14, 83-115	1.3	37
225	An analytical approach to the problem of inverse optimization with additive objective functions: an application to human prehension. <i>Journal of Mathematical Biology</i> , 2010 , 61, 423-53	2	47
224	Prehension synergies and control with referent hand configurations. <i>Experimental Brain Research</i> , 2010 , 202, 213-29	2.3	61
223	Manipulation of a fragile object. Experimental Brain Research, 2010, 202, 413-30	2.3	32
222	Multi-muscle synergies in a dual postural task: evidence for the principle of superposition. <i>Experimental Brain Research</i> , 2010 , 202, 457-71	2.3	35
221	Finger interaction in a three-dimensional pressing task. Experimental Brain Research, 2010, 203, 101-18	2.3	18
220	Variance components in discrete force production tasks. <i>Experimental Brain Research</i> , 2010 , 205, 335-49	2.3	11
219	Optimality vs. variability: an example of multi-finger redundant tasks. <i>Experimental Brain Research</i> , 2010 , 207, 119-32	2.3	55
218	Stages in learning motor synergies: a view based on the equilibrium-point hypothesis. <i>Human Movement Science</i> , 2010 , 29, 642-54	2.4	90
217	How long does it take to describe what one sees? The first step using picture description tasks. <i>Human Movement Science</i> , 2010 , 29, 369-85	2.4	3
216	Kinematic synergies during saccades involving whole-body rotation: a study based on the uncontrolled manifold hypothesis. <i>Human Movement Science</i> , 2010 , 29, 243-58	2.4	6
215	Analyses of joint variance related to voluntary whole-body movements performed in standing. <i>Journal of Neuroscience Methods</i> , 2010 , 188, 89-96	3	22
214	Motor control theories and their applications. <i>Medicina (Lithuania)</i> , 2010 , 46, 382-92	3.1	37
213	Violations of Fitts' law in a ballistic task. <i>Journal of Motor Behavior</i> , 2009 , 41, 525-8	1.4	11
212	Effects of joint immobilization on standing balance. <i>Human Movement Science</i> , 2009 , 28, 515-28	2.4	42

(2008-2009)

211	Interaction of finger enslaving and error compensation in multiple finger force production. <i>Experimental Brain Research</i> , 2009 , 192, 293-8	2.3	19
210	Postural control during upper body locomotor-like movements: similar synergies based on dissimilar muscle modes. <i>Experimental Brain Research</i> , 2009 , 193, 565-79	2.3	23
209	Hierarchical control of static prehension: I. Biomechanics. Experimental Brain Research, 2009, 193, 615-	312.3	17
208	Hierarchical control of static prehension: II. Multi-digit synergies. <i>Experimental Brain Research</i> , 2009 , 194, 1-15	2.3	55
207	Effects of grasping force magnitude on the coordination of digit forces in multi-finger prehension. <i>Experimental Brain Research</i> , 2009 , 194, 115-29	2.3	8
206	Prehension synergies: a study of digit force adjustments to the continuously varied load force exerted on a partially constrained hand-held object. <i>Experimental Brain Research</i> , 2009 , 197, 1-13	2.3	1
205	The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies. <i>Experimental Brain Research</i> , 2009 , 196, 263-77	2.3	39
204	Joint coordination during bimanual transport of real and imaginary objects. <i>Neuroscience Letters</i> , 2009 , 456, 80-4	3.3	16
203	Evidence for slowing as a function of index of difficulty in young adults with Down syndrome. <i>American Journal on Intellectual and Developmental Disabilities</i> , 2009 , 114, 411-26	2.2	11
202	Mechanical analysis and hierarchies of multidigit synergies during accurate object rotation. <i>Motor Control</i> , 2009 , 13, 251-79	1.3	21
201	Multi-finger prehension: control of a redundant mechanical system. <i>Advances in Experimental Medicine and Biology</i> , 2009 , 629, 597-618	3.6	33
200	Finger inter-dependence: linking the kinetic and kinematic variables. <i>Human Movement Science</i> , 2008 , 27, 408-22	2.4	35
199	Motor Control: The Heart of Kinesiology. <i>Quest</i> , 2008 , 60, 19-30	2.2	5
198	Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis. <i>Journal of Human Kinetics</i> , 2008 , 19, 3-24	2.6	35
197	Time evolution of the organization of multi-muscle postural responses to sudden changes in the external force applied at the trunk level. <i>Neuroscience Letters</i> , 2008 , 438, 238-41	3.3	19
196	Multifinger ab- and adduction strength and coordination. <i>Journal of Hand Therapy</i> , 2008 , 21, 377-85	1.6	9
195	Multifinger prehension: an overview. <i>Journal of Motor Behavior</i> , 2008 , 40, 446-76	1.4	121
194	Is voluntary control of natural postural sway possible?. <i>Journal of Motor Behavior</i> , 2008 , 40, 179-85	1.4	37

193	The effects of strength training on finger strength and hand dexterity in healthy elderly individuals. <i>Journal of Applied Physiology</i> , 2008 , 105, 1166-78	3.7	51
192	Two Aspects of Motor Learning: Learning Movements and Learning Synergies. <i>Advances in Psychology</i> , 2008 , 139, 155-166		
191	Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. <i>Motor Control</i> , 2008 , 12, 151-72	1.3	34
190	A technique to determine friction at the fingertips. <i>Journal of Applied Biomechanics</i> , 2008 , 24, 43-50	1.2	60
189	Anticipatory synergy adjustments in preparation to self-triggered perturbations in elderly individuals. <i>Journal of Applied Biomechanics</i> , 2008 , 24, 175-9	1.2	24
188	What do synergies do? Effects of secondary constraints on multidigit synergies in accurate force-production tasks. <i>Journal of Neurophysiology</i> , 2008 , 99, 500-13	3.2	73
187	Learning effects on muscle modes and multi-mode postural synergies. <i>Experimental Brain Research</i> , 2008 , 184, 323-38	2.3	64
186	Multi-muscle synergies in an unusual postural task: quick shear force production. <i>Experimental Brain Research</i> , 2008 , 187, 237-53	2.3	48
185	Do synergies decrease force variability? A study of single-finger and multi-finger force production. <i>Experimental Brain Research</i> , 2008 , 188, 411-25	2.3	46
184	Flexible muscle modes and synergies in challenging whole-body tasks. <i>Experimental Brain Research</i> , 2008 , 189, 171-87	2.3	47
183	Digit force adjustments during finger addition/removal in multi-digit prehension. <i>Experimental Brain Research</i> , 2008 , 189, 345-59	2.3	15
182	Stability of the multi-finger prehension synergy studied with transcranial magnetic stimulation. <i>Experimental Brain Research</i> , 2008 , 190, 225-38	2.3	3
181	Hierarchies of Synergies in Human Movements. <i>Kinesiology</i> , 2008 , 40, 29-38	1	24
180	Synergy 2008 ,		225
179	Multi-digit maximum voluntary torque production on a circular object. <i>Ergonomics</i> , 2007 , 50, 660-75	2.9	15
178	Age-related changes in multifinger synergies in accurate moment of force production tasks. <i>Journal of Applied Physiology</i> , 2007 , 102, 1490-501	3.7	76
177	Prehension synergies in the grasps with complex friction patterns: local versus synergic effects and the template control. <i>Journal of Neurophysiology</i> , 2007 , 98, 16-28	3.2	20
176	Learning motor synergies by persons with Down syndrome. <i>Journal of Intellectual Disability Research</i> , 2007 , 51, 962-71	3.2	52

(2006-2007)

175	Finger synergies during multi-finger cyclic production of moment of force. <i>Experimental Brain Research</i> , 2007 , 177, 243-54	2.3	9
174	Hierarchies of synergies: an example of two-hand, multi-finger tasks. <i>Experimental Brain Research</i> , 2007 , 179, 167-80	2.3	60
173	Finger interaction during maximal radial and ulnar deviation efforts: experimental data and linear neural network modeling. <i>Experimental Brain Research</i> , 2007 , 179, 301-12	2.3	12
172	Muscle modes and synergies during voluntary body sway. Experimental Brain Research, 2007, 179, 533-5	6Q .3	79
171	Effects of postural task requirements on the speed-accuracy trade-off. <i>Experimental Brain Research</i> , 2007 , 180, 457-67	2.3	27
170	Emerging and disappearing synergies in a hierarchically controlled system. <i>Experimental Brain Research</i> , 2007 , 183, 259-70	2.3	33
169	The role of kinematic redundancy in adaptation of reaching. Experimental Brain Research, 2007, 176, 54-	-69 3	77
168	Adjustments to local friction in multifinger prehension. <i>Journal of Motor Behavior</i> , 2007 , 39, 276-90	1.4	22
167	Toward a new theory of motor synergies. <i>Motor Control</i> , 2007 , 11, 276-308	1.3	507
166	Postural preparation to making a step: is there a 'motor program' for postural preparation?. <i>Journal of Applied Biomechanics</i> , 2007 , 23, 261-74	1.2	7
165	Elderly show decreased adjustments of motor synergies in preparation to action. <i>Clinical Biomechanics</i> , 2007 , 22, 44-51	2.2	51
164	Stepping from a narrow support. <i>Journal of Electromyography and Kinesiology</i> , 2007 , 17, 462-72	2.5	4
163	The use of flexible arm muscle synergies to perform an isometric stabilization task. <i>Clinical Neurophysiology</i> , 2007 , 118, 525-37	4.3	34
162	Anticipatory control of head posture. Clinical Neurophysiology, 2007, 118, 1802-14	4.3	19
161	A device for testing the intrinsic muscles of the hand. <i>Journal of Hand Therapy</i> , 2007 , 20, 345-50	1.6	7
160	Similar motion of a hand-held object may trigger nonsimilar grip force adjustments. <i>Journal of Hand Therapy</i> , 2007 , 20, 300-7; quiz 308; discussion 309	1.6	6
159	Maintaining rotational equilibrium during object manipulation: linear behavior of a highly non-linear system. <i>Experimental Brain Research</i> , 2006 , 169, 519-31	2.3	26
158	Effects of friction at the digit-object interface on the digit forces in multi-finger prehension. <i>Experimental Brain Research</i> , 2006 , 172, 425-38	2.3	44

157	Anticipatory adjustments of multi-finger synergies in preparation for self-triggered perturbations. <i>Experimental Brain Research</i> , 2006 , 174, 604-12	2.3	38
156	Muscle synergies during voluntary body sway: combining across-trials and within-a-trial analyses. <i>Experimental Brain Research</i> , 2006 , 174, 679-93	2.3	49
155	Accurate production of time-varying patterns of the moment of force in multi-finger tasks. <i>Experimental Brain Research</i> , 2006 , 175, 68-82	2.3	15
154	Adjustments of prehension synergies in response to self-triggered and experimenter-triggered load and torque perturbations. <i>Experimental Brain Research</i> , 2006 , 175, 641-53	2.3	42
153	Muscle synergies involved in preparation to a step made under the self-paced and reaction time instructions. <i>Clinical Neurophysiology</i> , 2006 , 117, 41-56	4.3	42
152	Hand dominance and multi-finger synergies. <i>Neuroscience Letters</i> , 2006 , 409, 200-4	3.3	33
151	Two kinematic synergies in voluntary whole-body movements during standing. <i>Journal of Neurophysiology</i> , 2006 , 95, 636-45	3.2	59
150	Prehension stability: experiments with expanding and contracting handle. <i>Journal of Neurophysiology</i> , 2006 , 95, 2513-29	3.2	23
149	Movement System VariabilityEdited by Davids Keith, Bennett Simon, and Newell Karl M. Published in 2006 by Human Kinetics, Inc., Champaign, IL. ISBN: 0-7360-44825 <i>Motor Control</i> , 2006 , 10, 197-199	1.3	
148	Changes in postural sway and its fractions in conditions of postural instability. <i>Journal of Applied Biomechanics</i> , 2006 , 22, 51-60	1.2	81
147	Synergies in Health and Disease: Relations to Adaptive Changes in Motor Coordination. <i>Physical Therapy</i> , 2006 , 86, 1151-1160	3.3	109
146	Feed-forward control of a redundant motor system. <i>Biological Cybernetics</i> , 2006 , 95, 271-80	2.8	50
145	Feed-forward control of a redundant motor system. <i>Biological Cybernetics</i> , 2006 , 95, 271	2.8	1
144	Principle of Superposition in Human Prehension 2006 , 249-261		5
143	Changes in Finger Coordination and Hand Function with Advanced Age 2006 , 141-159		4
142	Synergies in health and disease: relations to adaptive changes in motor coordination. <i>Physical Therapy</i> , 2006 , 86, 1151-60	3.3	50
141	Control of finger force direction in the flexion-extension plane. <i>Experimental Brain Research</i> , 2005 , 161, 307-15	2.3	23
140	Control of single-joint movements with a reversal. <i>Journal of Electromyography and Kinesiology</i> , 2005 , 15, 406-17	2.5	

(2004-2005)

139	Plastic changes in interhemispheric inhibition with practice of a two-hand force production task: a transcranial magnetic stimulation study. <i>Neuroscience Letters</i> , 2005 , 374, 104-8	3.3	23
138	Anticipatory covariation of finger forces during self-paced and reaction time force production. <i>Neuroscience Letters</i> , 2005 , 381, 92-6	3.3	115
137	Viscoelastic response of the finger pad to incremental tangential displacements. <i>Journal of Biomechanics</i> , 2005 , 38, 1441-9	2.9	43
136	Reversals of anticipatory postural adjustments during voluntary sway in humans. <i>Journal of Physiology</i> , 2005 , 565, 675-84	3.9	23
135	Is the thumb a fifth finger? A study of digit interaction during force production tasks. <i>Experimental Brain Research</i> , 2005 , 160, 203-13	2.3	33
134	Testing hypotheses and the advancement of science: recent attempts to falsify the equilibrium point hypothesis. <i>Experimental Brain Research</i> , 2005 , 161, 91-103	2.3	140
133	Joint angle variability in 3D bimanual pointing: uncontrolled manifold analysis. <i>Experimental Brain Research</i> , 2005 , 163, 44-57	2.3	85
132	Motor variability within a multi-effector system: experimental and analytical studies of multi-finger production of quick force pulses. <i>Experimental Brain Research</i> , 2005 , 163, 75-85	2.3	40
131	Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects. <i>Experimental Brain Research</i> , 2005 , 162, 300-8	2.3	81
130	Muscle synergies involved in shifting the center of pressure while making a first step. <i>Experimental Brain Research</i> , 2005 , 167, 196-210	2.3	40
129	The emergence and disappearance of multi-digit synergies during force-production tasks. <i>Experimental Brain Research</i> , 2005 , 164, 260-70	2.3	123
128	Internal forces during object manipulation. Experimental Brain Research, 2005, 165, 69-83	2.3	47
127	A central back-coupling hypothesis on the organization of motor synergies: a physical metaphor and a neural model. <i>Biological Cybernetics</i> , 2005 , 92, 186-91	2.8	121
126	Postural synergies and their development. <i>Neural Plasticity</i> , 2005 , 12, 119-30; discussion 263-72	3.3	24
125	Prehension synergies in three dimensions. <i>Journal of Neurophysiology</i> , 2005 , 93, 766-76	3.2	76
124	Prehension synergies: trial-to-trial variability and principle of superposition during static prehension in three dimensions. <i>Journal of Neurophysiology</i> , 2005 , 93, 3649-58	3.2	59
123	Tangential load sharing among fingers during prehension. <i>Ergonomics</i> , 2004 , 47, 876-89	2.9	26
122	Computational ideas developed within the control theory have limited relevance to control processes in living systems. <i>Behavioral and Brain Sciences</i> , 2004 , 27, 409-409	0.9	1

121	Effects of motor imagery on finger force responses to transcranial magnetic stimulation. <i>Cognitive Brain Research</i> , 2004 , 20, 273-80		55
120	The effects of muscle vibration on anticipatory postural adjustments. <i>Brain Research</i> , 2004 , 1015, 57-72	2 3.7	48
119	Neural network modeling supports a theory on the hierarchical control of prehension. <i>Neural Computing and Applications</i> , 2004 , 13, 352-359	4.8	3
118	Indices of nonlinearity in finger force interaction. <i>Biological Cybernetics</i> , 2004 , 90, 264-71	2.8	2
117	Prehension synergies during nonvertical grasping, I: experimental observations. <i>Biological Cybernetics</i> , 2004 , 91, 148-58	2.8	35
116	Prehension synergies during nonvertical grasping, II: Modeling and optimization. <i>Biological Cybernetics</i> , 2004 , 91, 231-42	2.8	29
115	Is there a timing synergy during multi-finger production of quick force pulses?. <i>Psychopharmacology</i> , 2004 , 177, 217-23	4.7	5
114	Finger interaction during accurate multi-finger force production tasks in young and elderly persons. <i>Experimental Brain Research</i> , 2004 , 156, 282-92	2.3	91
113	Muscle modes during shifts of the center of pressure by standing persons: effect of instability and additional support. <i>Experimental Brain Research</i> , 2004 , 157, 18-31	2.3	86
112	Learning multi-finger synergies: an uncontrolled manifold analysis. <i>Experimental Brain Research</i> , 2004 , 157, 336-50	2.3	92
111	Finger coordination during moment production on a mechanically fixed object. <i>Experimental Brain Research</i> , 2004 , 157, 457-67	2.3	30
110	Is there a timing synergy during multi-finger production of quick force pulses?. <i>Experimental Brain Research</i> , 2004 , 159, 65-71	2.3	19
109	The principle of superposition in human prehension. <i>Robotica</i> , 2004 , 22, 231-234	2.1	69
108	Prehension synergies. Exercise and Sport Sciences Reviews, 2004, 32, 75-80	6.7	92
107	Brain Mechanisms for the Integration of Posture and Movement: (Progress in Brain Research, vol. 143)Edited by Mori S., Stuart D. G. Wiesendanger M Published in 2003 by Elsevier Science Publishing Co., Amsterdam. ISBN: 0-444-51389-2 <i>Motor Control</i> , 2004 , 8, 359-363	1.3	
106	Rotational equilibrium during multi-digit pressing and prehension. <i>Motor Control</i> , 2004 , 8, 392-404	1.3	17
105	Age-related changes in finger coordination in static prehension tasks. <i>Journal of Applied Physiology</i> , 2004 , 97, 213-24	3.7	142
104	Age effects on force produced by intrinsic and extrinsic hand muscles and finger interaction during MVC tasks. <i>Journal of Applied Physiology</i> , 2003 , 95, 1361-9	3.7	85

(2003-2003)

103	Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. <i>Journal of Applied Physiology</i> , 2003 , 94, 259-70	3.7	120
102	Effects of altering initial position on movement direction and extent. <i>Journal of Neurophysiology</i> , 2003 , 89, 401-15	3.2	88
101	Similarities and Differences in Finger Interaction across Typical and Atypical Subpopulations. <i>Journal of Applied Biomechanics</i> , 2003 , 19, 264-270	1.2	2
100	Analysis of a Network for Finger Interaction during Two-Hand Multi-Finger Force Production Tasks. <i>Journal of Applied Biomechanics</i> , 2003 , 19, 295-309	1.2	3
99	Movement sway: changes in postural sway during voluntary shifts of the center of pressure. <i>Experimental Brain Research</i> , 2003 , 150, 314-24	2.3	63
98	Finger interaction during multi-finger tasks involving finger addition and removal. <i>Experimental Brain Research</i> , 2003 , 150, 230-6	2.3	21
97	Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multifinger force production task. <i>Experimental Brain Research</i> , 2003 , 151, 60-71	2.3	51
96	Prehension synergies: trial-to-trial variability and hierarchical organization of stable performance. <i>Experimental Brain Research</i> , 2003 , 152, 173-84	2.3	105
95	Muscle synergies during shifts of the center of pressure by standing persons. <i>Experimental Brain Research</i> , 2003 , 152, 281-92	2.3	204
94	Uncontrolled manifold analysis of single trials during multi-finger force production by persons with and without Down syndrome. <i>Experimental Brain Research</i> , 2003 , 153, 45-58	2.3	87
93	A mode hypothesis for finger interaction during multi-finger force-production tasks. <i>Biological Cybernetics</i> , 2003 , 88, 91-8	2.8	128
92	Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. <i>Biological Cybernetics</i> , 2003 , 89, 152-61	2.8	139
91	Matrix analyses of interaction among fingers in static force production tasks. <i>Biological Cybernetics</i> , 2003 , 89, 407-14	2.8	13
90	Effects of transcranial magnetic stimulation on muscle activation patterns and joint kinematics within a two-joint motor synergy. <i>Brain Research</i> , 2003 , 961, 229-42	3.7	8
89	Approaches to analysis of handwriting as a task of coordinating a redundant motor system. <i>Human Movement Science</i> , 2003 , 22, 153-71	2.4	62
88	Finger force vectors in multi-finger prehension. <i>Journal of Biomechanics</i> , 2003 , 36, 1745-9	2.9	50
87	The human central nervous system needs time to organize task-specific covariation of finger forces. <i>Neuroscience Letters</i> , 2003 , 353, 72-72	3.3	
86	Finger interactions studied with transcranial magnetic stimulation during multi-finger force production tasks. <i>Clinical Neurophysiology</i> , 2003 , 114, 1445-55	4.3	28

85	The effects of stroke and age on finger interaction in multi-finger force production tasks. <i>Clinical Neurophysiology</i> , 2003 , 114, 1646-55	4.3	63
84	The human central nervous system needs time to organize task-specific covariation of finger forces. <i>Neuroscience Letters</i> , 2003 , 353, 72-4	3.3	31
83	Anticipatory postural adjustments under simple and choice reaction time conditions. <i>Brain Research</i> , 2002 , 924, 184-97	3.7	64
82	Central mechanisms of finger interaction during one- and two-hand force production at distal and proximal phalanges. <i>Brain Research</i> , 2002 , 924, 198-208	3.7	56
81	Structure of joint variability in bimanual pointing tasks. <i>Experimental Brain Research</i> , 2002 , 143, 11-23	2.3	128
80	Finger coordination in persons with Down syndrome: atypical patterns of coordination and the effects of practice. <i>Experimental Brain Research</i> , 2002 , 146, 345-55	2.3	89
79	Finger coordination during discrete and oscillatory force production tasks. <i>Experimental Brain Research</i> , 2002 , 146, 419-32	2.3	96
78	Effects of different types of light touch on postural sway. <i>Experimental Brain Research</i> , 2002 , 147, 71-9	2.3	88
77	Relations between surface EMG of extrinsic flexors and individual finger forces support the notion of muscle compartments. <i>European Journal of Applied Physiology</i> , 2002 , 88, 185-8	3.4	27
76	Force and torque production in static multifinger prehension: biomechanics and control. II. Control. <i>Biological Cybernetics</i> , 2002 , 87, 40-9	2.8	55
75	Force and torque production in static multifinger prehension: biomechanics and control. I. Biomechanics. <i>Biological Cybernetics</i> , 2002 , 87, 50-7	2.8	92
74	Understanding finger coordination through analysis of the structure of force variability. <i>Biological Cybernetics</i> , 2002 , 86, 29-39	2.8	138
73	Organization of drinking: postural characteristics of arm-head coordination. <i>Journal of Motor Behavior</i> , 2002 , 34, 139-50	1.4	11
72	Motor control strategies revealed in the structure of motor variability. <i>Exercise and Sport Sciences Reviews</i> , 2002 , 30, 26-31	6.7	530
71	Task-specific modulation of anticipatory postural adjustments in individuals with hemiparesis. <i>Clinical Neurophysiology</i> , 2002 , 113, 642-55	4.3	59
70	Coupling phenomena during asynchronous submaximal two-hand, multi-finger force production tasks in humans. <i>Neuroscience Letters</i> , 2002 , 331, 75-8	3.3	11
69	The role of action in postural preparation for loading and unloading in standing subjects. <i>Experimental Brain Research</i> , 2001 , 138, 458-66	2.3	61
68	Bilateral multifinger deficits in symmetric key-pressing tasks. <i>Experimental Brain Research</i> , 2001 , 140, 86-94	2.3	16

(1999-2001)

67	Structure of motor variability in marginally redundant multifinger force production tasks. <i>Experimental Brain Research</i> , 2001 , 141, 153-65	2.3	217
66	Bilateral deficit and symmetry in finger force production during two-hand multifinger tasks. <i>Experimental Brain Research</i> , 2001 , 141, 530-40	2.3	42
65	Anticipatory postural adjustments during load catching by standing subjects. <i>Clinical Neurophysiology</i> , 2001 , 112, 1250-65	4.3	69
64	Anticipatory postural adjustments associated with lateral and rotational perturbations during standing. <i>Journal of Electromyography and Kinesiology</i> , 2001 , 11, 39-51	2.5	29
63	Mirror writing: Adults making A-non-B errors?. Behavioral and Brain Sciences, 2001, 24, 46-46	0.9	
62	Components of the End-Effector Jerk during Voluntary Arm Movements. <i>Journal of Applied Biomechanics</i> , 2000 , 16, 14-25	1.2	8
61	Finger Coordination and Bilateral Deficit during Two-Hand Force Production Tasks Performed by Right-Handed Subjects. <i>Journal of Applied Biomechanics</i> , 2000 , 16, 379-391	1.2	24
60	30 years later: On the problem of the relation between structure and function in the brain from a contemporary viewpoint (1996), part II. <i>Motor Control</i> , 2000 , 4, 125-49	1.3	10
59	The equilibrium-point hypothesis is still doing fine. Human Movement Science, 2000, 19, 933-938	2.4	5
58	The effects of instability and additional hand support on anticipatory postural adjustments in leg, trunk, and arm muscles during standing. <i>Experimental Brain Research</i> , 2000 , 135, 81-93	2.3	111
57	Identifying the control structure of multijoint coordination during pistol shooting. <i>Experimental Brain Research</i> , 2000 , 135, 382-404	2.3	272
56	Enslaving effects in multi-finger force production. Experimental Brain Research, 2000, 131, 187-95	2.3	299
55	Modulation of simple reaction time on the background of an oscillatory action: implications for synergy organization. <i>Experimental Brain Research</i> , 2000 , 131, 85-100	2.3	16
54	The organization of quick corrections within a two-joint synergy in conditions of unexpected blocking and release of a fast movement. <i>Clinical Neurophysiology</i> , 2000 , 111, 975-87	4.3	26
53	The roles of proximal and distal muscles in anticipatory postural adjustments under asymmetrical perturbations and during standing on rollerskates. <i>Clinical Neurophysiology</i> , 2000 , 111, 613-23	4.3	59
52	Mirror Writing: Learning, Transfer, and Implications for Internal Inverse Models. <i>Journal of Motor Behavior</i> , 1999 , 31, 107-111	1.4	56
51	Reconstruction of equilibrium trajectories during whole-body movements. <i>Biological Cybernetics</i> , 1999 , 80, 195-204	2.8	15
50	The basis of a simple synergy: reconstruction of joint equilibrium trajectories during unrestrained arm movements. <i>Human Movement Science</i> , 1999 , 18, 3-30	2.4	29

49	Changes in movement kinematics during single-joint movements against expectedly and unexpectedly changed inertial loads. <i>Human Movement Science</i> , 1999 , 18, 49-66	2.4	13
48	Learning a pointing task with a kinematically redundant limb: Emerging synergies and patterns of final position variability. <i>Human Movement Science</i> , 1999 , 18, 819-838	2.4	22
47	30 years later: the relation between structure and function in the brain from a contemporary point of view (1966), part I. <i>Motor Control</i> , 1999 , 3, 329-32, 342-45	1.3	5
46	A study of a bimanual synergy associated with holding an object. <i>Human Movement Science</i> , 1998 , 17, 753-779	2.4	31
45	Coordinated force production in multi-finger tasks: finger interaction and neural network modeling. <i>Biological Cybernetics</i> , 1998 , 79, 139-50	2.8	194
44	Changes in the symmetry of rapid movements. Effects of velocity and viscosity. <i>Experimental Brain Research</i> , 1998 , 120, 52-60	2.3	18
43	Anticipatory postural adjustments during self-paced and reaction-time movements. <i>Experimental Brain Research</i> , 1998 , 121, 7-19	2.3	108
42	Motor redundancy during maximal voluntary contraction in four-finger tasks. <i>Experimental Brain Research</i> , 1998 , 122, 71-8	2.3	95
41	A principle of error compensation studied within a task of force production by a redundant set of fingers. <i>Experimental Brain Research</i> , 1998 , 122, 131-8	2.3	75
40	Changes in the force-sharing pattern induced by modifications of visual feedback during force production by a set of fingers. <i>Experimental Brain Research</i> , 1998 , 123, 255-62	2.3	47
39	Learning a motor task involving obstacles by a multi-joint, redundant limb: two synergies within one movement. <i>Journal of Electromyography and Kinesiology</i> , 1998 , 8, 169-76	2.5	9
38	Anticipatory postural adjustments in conditions of postural instability. <i>Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control</i> , 1998 , 109, 350-9		147
37	Instruction-dependent muscle activation patterns within a two-joint synergy: separating mechanics from neurophysiology. <i>Journal of Motor Behavior</i> , 1998 , 30, 194-8	1.4	5
36	Virtual reality: a fascinating tool for motor rehabilitation (to be used with caution). <i>Disability and Rehabilitation</i> , 1998 , 20, 104-5	2.4	25
35	On the problem of adequate language in motor control. <i>Motor Control</i> , 1998 , 2, 306-13	1.3	210
34	Motor Control and Sensory Motor Integration (Advances in Psychology Series, Volume III). <i>Motor Control</i> , 1997 , 1, 192-196	1.3	
33	Flawed kinematic models cannot provide insight into the nature of motor variability. <i>Behavioral and Brain Sciences</i> , 1997 , 20, 314-315	0.9	1
32	Does controlling movement require intelligence?. <i>Behavioral and Brain Sciences</i> , 1997 , 20, 533-536	0.9	

31	Anticipatory postural adjustments during self-initiated perturbations of different magnitude triggered by a standard motor action. <i>Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control</i> , 1996 , 101, 497-503		35
30	What are flormal movements In atypical populations?. Behavioral and Brain Sciences, 1996, 19, 55-68	0.9	275
29	Toward peaceful coexistence of adaptive central strategies and medical professionals. <i>Behavioral and Brain Sciences</i> , 1996 , 19, 94-106	0.9	2
28	The notions of joint stiffness and synaptic plasticity in motor memory. <i>Behavioral and Brain Sciences</i> , 1996 , 19, 465-466	0.9	2
27	Are there deficits in anticipatory postural adjustments in Parkinson's disease?. <i>NeuroReport</i> , 1996 , 7, 1794-6	1.7	16
26	The effects of practice on movement reproduction: Implications for models of motor control. <i>Human Movement Science</i> , 1996 , 15, 101-114	2.4	12
25	Changes in voluntary motor control induced by intrathecal baclofen in patients with spasticity of different etiology. <i>Physiotherapy Research International</i> , 1996 , 1, 229-46	1.8	25
24	Motor control research in rehabilitation medicine. <i>Disability and Rehabilitation</i> , 1996 , 18, 293-9	2.4	13
23	The relation between posture and movement: A study of a simple synergy in a two-joint task. <i>Human Movement Science</i> , 1995 , 14, 79-107	2.4	79
22	Velocity-dependent activation of postural muscles in a simple two-joint synergy. <i>Human Movement Science</i> , 1995 , 14, 351-369	2.4	7
21	Feedforward postural adjustments in a simple two-joint synergy in patients with Parkinson's disease. <i>Electroencephalography and Clinical Neurophysiology - Electromyography and Motor Control</i> , 1995 , 97, 77-89		59
20	Equilibrium-point control? Yes! Deterministic mechanisms of control? No!. <i>Behavioral and Brain Sciences</i> , 1995 , 18, 765-766	0.9	
19	Practice and transfer effects during fast single-joint elbow movements in individuals with Down syndrome. <i>Physical Therapy</i> , 1994 , 74, 1000-12; discussion 1012-6	3.3	77
18	A new book by N. A. Bernstein: "On dexterity and its development". <i>Journal of Motor Behavior</i> , 1994 , 26, 56-62	1.4	24
17	Abnormal motor patterns in the framework of the equilibrium-point hypothesis: a cause for dystonic movements?. <i>Biological Cybernetics</i> , 1994 , 71, 87-94	2.8	38
16	Reconstruction of equilibrium trajectories and joint stiffness patterns during single-joint voluntary movements under different instructions. <i>Biological Cybernetics</i> , 1994 , 71, 441-50	2.8	23
15	An equilibrium-point model of electromyographic patterns during single-joint movements based on experimentally reconstructed control signals. <i>Journal of Electromyography and Kinesiology</i> , 1994 , 4, 230-	4 5	44
14	Abnormal motor patterns in the framework of the equilibrium-point hypothesis: a cause for dystonic movements?. <i>Biological Cybernetics</i> , 1994 , 71, 87-94	2.8	

13	Reconstruction of equilibrium trajectories and joint stiffness patterns during single-joint voluntary movements under different instructions. <i>Biological Cybernetics</i> , 1994 , 71, 441-450	2.8	
12	Kinematic description of variability of fast movements: analytical and experimental approaches. <i>Biological Cybernetics</i> , 1993 , 69, 485-492	2.8	48
11	Joint stiffness: Myth or reality?. Human Movement Science, 1993, 12, 653-692	2.4	330
10	Electromechanical delay: An experimental artifact. <i>Journal of Electromyography and Kinesiology</i> , 1992 , 2, 59-68	2.5	173
9	Effects of practice on final position reproduction. Experimental Brain Research, 1992, 91, 129-34	2.3	18
8	Motor control in Down syndrome: The role of adaptation and practice. <i>Journal of Developmental and Physical Disabilities</i> , 1992 , 4, 227-261	1.5	74
7	Independent control of joint stiffness in the framework of the equilibrium-point hypothesis. <i>Biological Cybernetics</i> , 1992 , 67, 377-84	2.8	36
6	An equilibrium-point model for fast, single-joint movement: I. Emergence of strategy-dependent EMG patterns. <i>Journal of Motor Behavior</i> , 1991 , 23, 163-77	1.4	56
5	An equilibrium-point model for fast, single-joint movement: II. Similarity of single-joint isometric and isotonic descending commands. <i>Journal of Motor Behavior</i> , 1991 , 23, 179-91	1.4	79
4	Effects of intrathecal baclofen on voluntary motor control in spastic paresis. <i>Journal of Neurosurgery</i> , 1990 , 72, 388-92	3.2	53
3	Intrathecal baclofen for severe spinal spasticity. New England Journal of Medicine, 1989, 320, 1517-21	59.2	609
2	Interaction of afferent and efferent signals underlying joint position sense: empirical and theoretical approaches. <i>Journal of Motor Behavior</i> , 1982 , 14, 174-93	1.4	174
1	Digit forces in multi-digit grasps33-51		4