Daniel K Schreiber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8665724/publications.pdf Version: 2024-02-01

DANIEL K SCHDEIBED

#	Article	IF	CITATIONS
1	Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions. Acta Materialia, 2019, 164, 362-376.	7.9	145
2	Behavior of molecules and molecular ions near a field emitter. New Journal of Physics, 2016, 18, 033031.	2.9	130
3	Atomic origins of water-vapour-promoted alloy oxidation. Nature Materials, 2018, 17, 514-518.	27.5	106
4	Contribution of atom-probe tomography to a better understanding of glass alteration mechanisms: Application to a nuclear glass specimen altered 25years in a granitic environment. Chemical Geology, 2013, 349-350, 99-109.	3.3	105
5	Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy, 2015, 148, 57-66.	1.9	64
6	A method for site-specific and cryogenic specimen fabrication of liquid/solid interfaces for atom probe tomography. Ultramicroscopy, 2018, 194, 89-99.	1.9	64
7	Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Co10: Unexpected high Cr enrichment within the passive film. Acta Materialia, 2020, 198, 121-133.	7.9	64
8	Self-accelerated corrosion of nuclear waste forms at material interfaces. Nature Materials, 2020, 19, 310-316.	27.5	61
9	Catalyst Incorporation at Defects during Nanowire Growth. Nano Letters, 2012, 12, 167-171.	9.1	58
10	Controlling the corrosion resistance of multi-principal element alloys. Scripta Materialia, 2020, 188, 96-101.	5.2	58
11	Grain boundary depletion and migration during selective oxidation of Cr in a Ni–5Cr binary alloy exposed to high-temperature hydrogenated water. Scripta Materialia, 2014, 89, 41-44.	5.2	57
12	Examinations of Oxidation and Sulfidation of Grain Boundaries in Alloy 600 Exposed to Simulated Pressurized Water Reactor Primary Water. Microscopy and Microanalysis, 2013, 19, 676-687.	0.4	52
13	Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2866-2874.	7.1	52
14	Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water. Corrosion Science, 2018, 131, 310-323.	6.6	48
15	In-situ transmission electron microscopy study of surface oxidation for Ni–10Cr and Ni–20Cr alloys. Scripta Materialia, 2016, 114, 129-132.	5.2	43
16	Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni–Al binary alloy exposed to high-temperature water. Scripta Materialia, 2013, 69, 509-512.	5.2	38
17	In situ atomic scale visualization of surface kinetics driven dynamics of oxide growth on a Ni–Cr surface. Chemical Communications, 2016, 52, 3300-3303.	4.1	38
18	Direct in Situ TEM Observation of Modification of Oxidation by the Injected Vacancies for Ni–4Al Alloy Using a Microfabricated Nanopost. ACS Applied Materials & Interfaces, 2015, 7, 17272-17277.	8.0	35

DANIEL K SCHREIBER

#	Article	IF	CITATIONS
19	Atom Probe Tomography Interlaboratory Study on Clustering Analysis in Experimental Data Using the Maximum Separation Distance Approach. Microscopy and Microanalysis, 2019, 25, 356-366.	0.4	32
20	Enhanced spin signals due to native oxide formation in Ni80Fe20/Ag lateral spin valves. Applied Physics Letters, 2010, 97, .	3.3	31
21	Tomographic mapping of the nanoscale water-filled pore structure in corroded borosilicate glass. Npj Materials Degradation, 2020, 4, .	5.8	29
22	Effects of Radiation-Induced Defects on Corrosion. Annual Review of Materials Research, 2021, 51, 293-328.	9.3	27
23	Ab Initio Modeling of Bulk and Intragranular Diffusion in Ni Alloys. Journal of Physical Chemistry Letters, 2015, 6, 1618-1623.	4.6	26
24	Resolving Iron(II) Sorption and Oxidative Growth on Hematite (001) Using Atom Probe Tomography. Journal of Physical Chemistry C, 2018, 122, 3903-3914.	3.1	26
25	Builtâ€In Potential in Fe ₂ O ₃ â€Cr ₂ O ₃ Superlattices for Improved Photoexcited Carrier Separation. Advanced Materials, 2016, 28, 1616-1622.	21.0	24
26	Vacancies and Vacancy-Mediated Self Diffusion in Cr ₂ O ₃ : A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 1817-1831.	3.1	24
27	Deciphering atomistic mechanisms of the gas-solid interfacial reaction during alloy oxidation. Science Advances, 2020, 6, eaay8491.	10.3	20
28	Atom probe analysis of electrode materials for Li-ion batteries: challenges and ways forward. Journal of Materials Chemistry A, 2022, 10, 4926-4935.	10.3	20
29	First-Principles Investigation of Native Interstitial Diffusion in Cr ₂ O ₃ . Journal of Physical Chemistry C, 2018, 122, 12984-12993.	3.1	19
30	Effects of optical dopants and laser wavelength on atom probe tomography analyses of borosilicate glasses. Journal of the American Ceramic Society, 2017, 100, 4801-4815.	3.8	18
31	Effect of annealing and applied bias on barrier shape in CoFe/MgO/CoFe tunnel junctions. Physical Review B, 2011, 83, .	3.2	16
32	Element redistributions during early stages of oxidation in a Ni38Cr22Fe20Mn10Co10 multi-principal element alloy. Scripta Materialia, 2021, 194, 113609.	5.2	16
33	Effects of elemental distributions on the behavior of MgO-based magnetic tunnel junctions. Journal of Applied Physics, 2011, 109, 103909.	2.5	15
34	The Application of the OPTICS Algorithm to Cluster Analysis in Atom Probe Tomography Data. Microscopy and Microanalysis, 2019, 25, 338-348.	0.4	15
35	Cryo-based structural characterization and growth model of salt film on metal. Corrosion Science, 2020, 174, 108812.	6.6	15
36	Nanoscale imaging of Li and B in nuclear waste glass, a comparison of ToF-SIMS, NanoSIMS, and APT. Surface and Interface Analysis, 2016, 48, 1392-1401.	1.8	14

DANIEL K SCHREIBER

#	Article	IF	CITATIONS
37	Adsorption and diffusion of atomic oxygen and sulfur at pristine and doped Ni surfaces with implications for stress corrosion cracking. Corrosion Science, 2016, 113, 26-30.	6.6	14
38	Rapid assessment of structural and compositional changes during early stages of zirconium alloy oxidation. Npj Materials Degradation, 2020, 4, .	5.8	14
39	Penetrative Internal Oxidation from Alloy 690 Surfaces and Stress Corrosion Crack Walls during Exposure to PWR Primary Water. , 2011, , 331-342.		14
40	Atomic Structural Analysis of Nanowire Defects and Polytypes Enabled Through Crossâ€ S ectional Lattice Imaging. Small, 2012, 8, 1717-1724.	10.0	13
41	Role of Cr-rich carbide precipitates in the intergranular oxidation of Ni-Cr alloys. Scripta Materialia, 2018, 156, 51-54.	5.2	13
42	Investigation of physical and chemical properties for upgraded SAP (SiO2Al2O3P2O5) waste form to immobilize radioactive waste salt. Journal of Nuclear Materials, 2019, 515, 382-391.	2.7	13
43	Temperature Dependence of Self-Diffusion in Cr ₂ O ₃ from First Principles. Journal of Physical Chemistry C, 2019, 123, 22139-22150.	3.1	12
44	Correlative STEM-APT characterization of radiation-induced segregation and precipitation of in-service BWR 304 stainless steel. Journal of Nuclear Materials, 2021, 549, 152894.	2.7	12
45	A Round Robin Experiment: Analysis of Solute Clustering from Atom Probe Tomography Data Microscopy and Microanalysis, 2016, 22, 666-667.	0.4	11
46	A Method for Directly Correlating Site-Specific Cross-Sectional and Plan-View Transmission Electron Microscopy of Individual Nanostructures. Microscopy and Microanalysis, 2012, 18, 1410-1418.	0.4	10
47	Multiscale model of metal alloy oxidation at grain boundaries. Journal of Chemical Physics, 2015, 142, 214114.	3.0	10
48	Bulk and Short ircuit Anion Diffusion in Epitaxial Fe ₂ O ₃ Films Quantified Using Buried Isotopic Tracer Layers. Advanced Materials Interfaces, 2021, 8, 2001768.	3.7	10
49	Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al. Corrosion Science, 2018, 139, 309-318.	6.6	9
50	Characterization of Stress Corrosion Cracking Initiation Precursors in Cold-Worked Alloy 690 Using Advanced High-Resolution Microscopy. Corrosion, 2019, 75, 727-736.	1.1	8
51	Background Recovery through the Quantification of Delayed Evaporation Multi-Ion Events in Atom-Probe Data. Microscopy and Microanalysis, 2015, 21, 857-858.	0.4	7
52	Reply to: How much does corrosion of nuclear waste matrices matter. Nature Materials, 2020, 19, 962-963.	27.5	7
53	Radiation-Enhanced Anion Transport in Hematite. Chemistry of Materials, 2021, 33, 2307-2318.	6.7	7
54	Nanoscale microstructure and chemistry of transparent gahnite glass-ceramics revealed by atom probe tomography. Scripta Materialia, 2021, 203, 114110.	5.2	7

DANIEL K SCHREIBER

#	Article	IF	CITATIONS
55	NanoSIMS imaging alteration layers of a leached SON68 glass via a FIB-made wedged crater. Surface and Interface Analysis, 2014, 46, 233-237.	1.8	6
56	Vacancy ordering during selective oxidation of \hat{I}^2 -NiAl. Materialia, 2020, 12, 100783.	2.7	6
57	Mechanistic insights into selective oxidation and corrosion of multi-principal element alloys from high resolution and in situ microscopy. Materialia, 2021, 18, 101148.	2.7	6
58	Comparative structural investigations of nuclear waste glass alteration layers and sol-gel synthesized aerogels. Npj Materials Degradation, 2020, 4, .	5.8	5
59	Alpha Shape Analysis (ASA) Framework for Post- Clustering Property Determination in Atom Probe Tomographic Data. Microscopy and Microanalysis, 2021, 27, 297-317.	0.4	5
60	Analysis of compositional uniformity in AlxGa1â´`xN thin films using atom probe tomography and electron microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	2.1	5
61	The effect of Cr alloying on defect migration at Ni grain boundaries. Journal of Materials Science, 2022, 57, 10499-10516.	3.7	5
62	Radiation Enhanced Anion Diffusion in Chromia. Journal of Physical Chemistry C, 2021, 125, 27820-27827.	3.1	5
63	Revealing the complexity of high temperature oxide formation in a 38Ni-21Cr-20Fe-13Ru-6Mo-2W (at. %) multi-principal element alloy. Scripta Materialia, 2022, 210, 114419.	5.2	4
64	On the dissolution of a borosilicate glass with the use of isotopic tracing – Insights into the mechanism for the long-term dissolution rate. Geochimica Et Cosmochimica Acta, 2022, 318, 213-229.	3.9	4
65	Adatom-Driven Oxygen Intermixing during the Deposition of Oxide Thin Films by Molecular Beam Epitaxy. Nano Letters, 2022, 22, 4963-4969.	9.1	4
66	Modeling selective intergranular oxidation of binary alloys. Journal of Chemical Physics, 2015, 142, 014704.	3.0	3
67	Mechanisms of Particle Coarsening and Phase Transformation in Oxide Dispersion Strengthened Steels During Friction Stir Welding. Microscopy and Microanalysis, 2016, 22, 676-677.	0.4	3
68	Predicting the temperature dependence of self-diffusion behavior in Ni-Cr alloys via molecular dynamics. Materials Today Communications, 2021, 26, 101982.	1.9	3
69	Electron Microscopy Characterizations and Atom Probe Tomography of Intergranular Attack in Alloy 600 Exposed to PWR Primary Water. , 2011, , 1503-1517.		3
70	Community-Driven Methods for Open and Reproducible Software Tools for Analyzing Datasets from Atom Probe Microscopy. Microscopy and Microanalysis, 2021, , 1-16.	0.4	2
71	Understanding the High-Temperature Mechanical Properties of A710 (HSLA-80) Steel With Use of Complementary Atom Probe Tomography and Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 954-955.	0.4	1
72	Exploring New Science Domains with Atom Probe Tomography Enabled by an Environmental Transfer Hub. Microscopy and Microanalysis, 2019, 25, 276-277.	0.4	1

#	Article	IF	CITATIONS
73	Advanced FIB-based Preparation of Cryogenically-prepared Specimens for APT Analysis. Microscopy and Microanalysis, 2019, 25, 878-879.	0.4	1
74	Fast Atomic Diffusion: Bulk and Short ircuit Anion Diffusion in Epitaxial Fe ₂ O ₃ Films Quantified Using Buried Isotopic Tracer Layers (Adv. Mater.) Tj ETQq0 0 0	rg B7 /Ove	erlack 10 Tf 5

75	Electron Microscopy Analysis of Grain Boundary Corrosion in Ni-Cr Binary Alloys Exposed to High Temperature Hydrogenated Water. Microscopy and Microanalysis, 2015, 21, 1175-1176.	0.4	0
76	Role of Grain Boundary Cr5B3 Precipitates on Intergranular Attack in Alloy 600. Minerals, Metals and Materials Series, 2019, , 359-374.	0.4	0
77	Role of Grain Boundary Cr5B3 Precipitates on Intergranular Attack in Alloy 600. Minerals, Metals and Materials Series, 2018, , 359-374.	0.4	0