Hongxiao Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8665386/publications.pdf Version: 2024-02-01

Ησηςχίλο μη

#	Article	IF	CITATIONS
1	Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data. Remote Sensing, 2017, 9, 1271.	4.0	152
2	A physically based vegetation index for improved monitoring of plant phenology. Remote Sensing of Environment, 2014, 152, 512-525.	11.0	118
3	An Optical Sensor Network for Vegetation Phenology Monitoring and Satellite Data Calibration. Sensors, 2011, 11, 7678-7709.	3.8	66
4	Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sensing of Environment, 2021, 260, 112456.	11.0	56
5	Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index. Remote Sensing of Environment, 2017, 198, 203-212.	11.0	48
6	EUROSPEC: at the interface between remote-sensing and ecosystem CO ₂ flux measurements in Europe. Biogeosciences, 2015, 12, 6103-6124.	3.3	47
7	New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes. International Journal of Biometeorology, 2019, 63, 763-775.	3.0	45
8	The confounding effect of snow cover on assessing spring phenology from space: A new look at trends on the Tibetan Plateau. Science of the Total Environment, 2021, 756, 144011.	8.0	34
9	Mapping the reduction in gross primary productivity in subarctic birch forests due to insect outbreaks. Biogeosciences, 2017, 14, 1703-1719.	3.3	18
10	First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. International Journal of Applied Earth Observation and Geoinformation, 2019, 78, 249-260.	2.8	18
11	<roman><italic>In Situ</italic></roman> Calibration of Light Sensors for Long-Term Monitoring of Vegetation. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 3405-3416.	6.3	13
12	Modelling Daily Gross Primary Productivity with Sentinel-2 Data in the Nordic Region–Comparison with Data from MODIS. Remote Sensing, 2021, 13, 469.	4.0	12
13	Hyperspectral reflectance measurements from UAS under intermittent clouds: Correcting irradiance measurements for sensor tilt. Remote Sensing of Environment, 2021, 267, 112719.	11.0	11
14	Drone-Based Hyperspectral and Thermal Imagery for Quantifying Upland Rice Productivity and Water Use Efficiency after Biochar Application. Remote Sensing, 2021, 13, 1866.	4.0	10
15	The missing pieces for better future predictions in subarctic ecosystems: A TornetrÃ s k case study. Ambio, 2021, 50, 375-392.	5.5	6
16	Seismic attenuation tomography in frequency domain and its application to engineering. Science in China Series D: Earth Sciences, 2000, 43, 431-438.	0.9	5