
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8664950/publications.pdf Version: 2024-02-01

ALAN V SMOCKA

#	Article	IF	CITATIONS
1	A network of Gα _i signaling partners is revealed by proximity labeling proteomics analysis and includes PDZ-RhoGEF. Science Signaling, 2022, 15, eabi9869.	1.6	6
2	Identifying Novel Signaling Mechanisms Downstream of G _q â€Coupled Receptors. FASEB Journal, 2022, 36, .	0.2	0
3	A naturally occurring membrane-anchored Gαs variant, XLαs, activates phospholipase Cβ4. Journal of Biological Chemistry, 2022, 298, 102134.	1.6	3
4	A universal allosteric mechanism for G protein activation. Molecular Cell, 2021, 81, 1384-1396.e6.	4.5	33
5	Identification of PDZâ€RhoGEF (PRG) as a Novel Gα i Target. FASEB Journal, 2021, 35, .	0.2	0
6	Golgiâ€resident β1â€adrenergic Receptor Signaling to Cardiac Hypertrophy in Cardiac Myocytes in Vitro and in Failing Hearts in Vivo. FASEB Journal, 2021, 35, .	0.2	0
7	Signaling Specificity of the Cα _i G Protein Subfamily8.5.5. FASEB Journal, 2021, 35, .	0.2	0
8	Uveal melanoma–associated mutations in PLCβ4 are constitutively activating and promote melanocyte proliferation and tumorigenesis. Science Signaling, 2021, 14, eabj4243.	1.6	7
9	Activation of Phospholipase C β by Cβγ and Cαq Involves C-Terminal Rearrangement to Release Autoinhibition. Structure, 2020, 28, 810-819.e5.	1.6	23
10	Hypertension induces glomerulosclerosis in phospholipase C-ε1 deficiency. American Journal of Physiology - Renal Physiology, 2020, 318, F1177-F1187.	1.3	9
11	Discovery of Small Molecules That Target the Phosphatidylinositol (3,4,5) Trisphosphate (PIP ₃)-Dependent Rac Exchanger 1 (P-Rex1) PIP ₃ -Binding Site and Inhibit P-Rex1–Dependent Functions in Neutrophils. Molecular Pharmacology, 2020, 97, 226-236.	1.0	13
12	β-arrestin mediates communication between plasma membrane and intracellular GPCRs to regulate signaling. Communications Biology, 2020, 3, 789.	2.0	4
13	Programming of Distinct Chemokine-Dependent and -Independent Search Strategies for Th1 and Th2 Cells Optimizes Function at Inflamed Sites. Immunity, 2019, 51, 298-309.e6.	6.6	50
14	G-protein Î ² Î ³ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor signaling. Cellular and Molecular Life Sciences, 2019, 76, 4447-4459.	2.4	50
15	Golgi localized β1-adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCε to regulate cardiac hypertrophy. ELife, 2019, 8, .	2.8	79
16	Phospholipase CÉ› Regulation of Cardiac Fibroblasts. FASEB Journal, 2019, 33, 809.4.	0.2	0
17	The physiological hypertrophic agonist, norepinephrine, is able to induce PLCâ€mediated PI4P hydrolysis in cardiac myocytes via a pool of internal βâ€adrenergic receptors. FASEB Journal, 2019, 33, 810.2.	0.2	0
18	b 1 â€Adrenergic Receptors in the Golgi Apparatus are Activated by Cell Permeable Agonists and Stimulate PLCâ€mediated PI4P Hydrolysis in Cardiac Myocytes. FASEB Journal, 2019, 33, .	0.2	0

#	Article	IF	CITATIONS
19	Activated heterotrimeric G protein αi subunits inhibit Rap-dependent cell adhesion and promote cell migration. Journal of Biological Chemistry, 2018, 293, 1570-1578.	1.6	10
20	Gedunin- and Khivorin-Derivatives Are Small-Molecule Partial Agonists for Adhesion G Protein-Coupled Receptors GPR56/ADGRG1 and GPR114/ADGRG5. Molecular Pharmacology, 2018, 93, 477-488.	1.0	54
21	G protein βγ subunits directly interact with and activate phospholipase CΕ. Journal of Biological Chemistry, 2018, 293, 6387-6397.	1.6	33
22	Targeting G protein-coupled receptor signalling by blocking G proteins. Nature Reviews Drug Discovery, 2018, 17, 789-803.	21.5	121
23	Phosphatidylinositol 4-phosphate is a major source of GPCR-stimulated phosphoinositide production. Science Signaling, 2018, 11, .	1.6	32
24	Compartmentalized cyclic nucleotides have opposing effects on regulation of hypertrophic phospholipase Cε signaling in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2018, 121, 51-59.	0.9	21
25	An Internal Pool of βâ€Adrenergic Receptors Activates PLCâ€mediated PI4P Hydrolysis in Cardiac Myocytes. FASEB Journal, 2018, 32, 686.8.	0.2	1
26	Biasing μ Opioid Receptors with G Protein Inhibitors to Improve Opioid Analgesics. FASEB Journal, 2018, 32, 689.4.	0.2	0
27	PLCε1 regulates SDF-1α–induced lymphocyte adhesion and migration to sites of inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2693-2698.	3.3	20
28	The Epac-Phospholipase Cε Pathway Regulates Endocannabinoid Signaling and Cocaine-Induced Disinhibition of Ventral Tegmental Area Dopamine Neurons. Journal of Neuroscience, 2017, 37, 3030-3044.	1.7	25
29	Targeted calcium influx boosts cytotoxic T lymphocyte function in the tumour microenvironment. Nature Communications, 2017, 8, 15365.	5.8	41
30	Phospholipase Cε Modulates Rap1 Activity and the Endothelial Barrier. PLoS ONE, 2016, 11, e0162338.	1.1	4
31	Inhibition of C Protein βγ Subunit Signaling Abrogates Nephritis in Lupusâ€Prone Mice. Arthritis and Rheumatology, 2016, 68, 2244-2256.	2.9	11
32	Phospholipase C-ε signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L517-L524.	1.3	27
33	Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein–Coupled Receptor Antagonist. Molecular Pharmacology, 2016, 90, 214-224.	1.0	47
34	Dynamic regulation of neutrophil polarity and migration by the heterotrimeric G protein subunits Gα _i -GTP and Gβγ. Science Signaling, 2016, 9, ra22.	1.6	29
35	Thrombin Promotes Sustained Signaling and Inflammatory Gene Expression through the CDC25 and Ras-associating Domains of Phospholipase Clμ. Journal of Biological Chemistry, 2015, 290, 26776-26783.	1.6	16
36	Adenylyl Cyclase 5 Regulation by G <i>î²î³</i> Involves Isoform-Specific Use of Multiple Interaction Sites. Molecular Pharmacology, 2015, 88, 758-767.	1.0	31

#	Article	IF	CITATIONS
37	Regulation of Phosphatidylinositol-specific Phospholipase C at the Nuclear Envelope in Cardiac Myocytes. Journal of Cardiovascular Pharmacology, 2015, 65, 203-210.	0.8	16
38	Fingerprinting G protein–coupled receptor signaling. Science Signaling, 2015, 8, fs20.	1.6	5
39	Phospholipase C Epsilon (PLCÎμ) Induced TRPC6 Activation: A Common but Redundant Mechanism in Primary Podocytes. Journal of Cellular Physiology, 2015, 230, 1389-1399.	2.0	27
40	Characterization of Small Molecule Gβγ Inhibitors in the Context of Inflammation. FASEB Journal, 2015, 29, 618.4.	0.2	0
41	PI4P Hydrolysis Represents a General Mechanism for DAG Generation and PKC/PKD Activation. FASEB Journal, 2015, 29, 618.6.	0.2	0
42	Epac1 and Epac2 are differentially involved in inflammatory and remodeling processes induced by cigarette smoke. FASEB Journal, 2014, 28, 4617-4628.	0.2	24
43	A Chemical Biology Approach Demonstrates G Protein Î ² Î ³ Subunits Are Sufficient to Mediate Directional Neutrophil Chemotaxis. Journal of Biological Chemistry, 2014, 289, 17791-17801.	1.6	42
44	M3 Muscarinic Receptor Interaction with Phospholipase C β3 Determines Its Signaling Efficiency. Journal of Biological Chemistry, 2014, 289, 11206-11218.	1.6	17
45	Simultaneous Adrenal and Cardiac G-Protein–Coupled Receptor-Gβγ Inhibition Halts Heart Failure Progression. Journal of the American College of Cardiology, 2014, 63, 2549-2557.	1.2	46
46	Lysophosphatidic acid induces vasodilation mediated by LPA ₁ receptors, phospholipase C, and endothelial nitric oxide synthase. FASEB Journal, 2014, 28, 880-890.	0.2	20
47	Identification of Activators of ERK5 Transcriptional Activity by High-Throughput Screening and the Role of Endothelial ERK5 in Vasoprotective Effects Induced by Statins and Antimalarial Agents. Journal of Immunology, 2014, 193, 3803-3815.	0.4	51
48	PLCε, PKD1, and SSH1L Transduce RhoA Signaling to Protect Mitochondria from Oxidative Stress in the Heart. Science Signaling, 2013, 6, ra108.	1.6	54
49	Phospholipase Cε Hydrolyzes Perinuclear Phosphatidylinositol 4-Phosphate to Regulate Cardiac Hypertrophy. Cell, 2013, 153, 216-227.	13.5	150
50	Molecular targeting of Cα and Cβγ subunits: a potential approach for cancer therapeutics. Trends in Pharmacological Sciences, 2013, 34, 290-298.	4.0	57
51	WDR26 Functions as a Scaffolding Protein to Promote Gβγ-mediated Phospholipase C β2 (PLCβ2) Activation in Leukocytes. Journal of Biological Chemistry, 2013, 288, 16715-16725.	1.6	20
52	Phospholipase CÉ> links G protein-coupled receptor activation to inflammatory astrocytic responses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3609-3614.	3.3	70
53	Epac2 and PLC Îμ contribute to the inflammatory response to cigarette smoke in vivo. FASEB Journal, 2013, 27, 1107.7.	0.2	0
54	G Protein–Coupled Receptor–Mediated Activation of p110β by Gβγ Is Required for Cellular Transformation and Invasiveness. Science Signaling, 2012, 5, ra89.	1.6	127

#	Article	IF	CITATIONS
55	Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cellular Signalling, 2012, 24, 1333-1343.	1.7	130
56	Protease-activated receptor 1 (PAR1) coupling to Gq/11 but not to Gi/o or G12/13 is mediated by discrete amino acids within the receptor second intracellular loop. Cellular Signalling, 2012, 24, 1351-1360.	1.7	34
57	Direct Physical Scaffolding of Muscarinic M3 Receptor Signal Transduction Pathways. FASEB Journal, 2012, 26, 663.5.	0.2	0
58	Taking the heart failure battle inside the cell: Small molecule targeting of Gβγ subunits. Journal of Molecular and Cellular Cardiology, 2011, 51, 462-467.	0.9	29
59	Phospholipase Câ [~] Scaffolds to Muscle-specific A Kinase Anchoring Protein (mAKAPβ) and Integrates Multiple Hypertrophic Stimuli in Cardiac Myocytes. Journal of Biological Chemistry, 2011, 286, 23012-23021.	1.6	86
60	Understanding Molecular Recognition by G protein βγ Subunits on the Path to Pharmacological Targeting. Molecular Pharmacology, 2011, 80, 551-557.	1.0	71
61	Purification of Heterotrimeric G Protein α Subunits by GST-Ric-8 Association. Journal of Biological Chemistry, 2011, 286, 2625-2635.	1.6	59
62	Phospholipase C-ε links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans. Islets, 2011, 3, 121-128.	0.9	68
63	Two Distinct Sites on GÎ ^{2Î3} are Required for Binding to the Nâ€Terminus Versus the Activation Site on Adenylyl Cyclase. FASEB Journal, 2011, 25, .	0.2	0
64	Phospholipase C ε Regulates Multiple Agonistsâ€Induced Cardiomyocyte Hypertrophy in Neonatal Rat Ventricular Myocytes By Binding To mAKAP (Muscle Aâ€Kinase Anchoring Protein) And Generating Local IP3â€Dependent Nuclear Calcium Release. FASEB Journal, 2011, 25, 1012.1.	0.2	0
65	NMR analysis of G-protein βγ subunit complexes reveals a dynamic Cα-Cβγ subunit interface and multiple protein recognition modes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 639-644.	3.3	25
66	Epac2-dependent mobilization of intracellular Ca ²⁺ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in β-cells of phospholipase C-ɛ knockout mice. Journal of Physiology, 2010, 588, 4871-4889.	1.3	61
67	Small Molecule Disruption of GÎ ² Î ³ Signaling Inhibits the Progression of Heart Failure. Circulation Research, 2010, 107, 532-539.	2.0	117
68	Identification and Characterization of Unique Proline-rich Peptides Binding to the Mitochondrial Fission Protein hFis1. Journal of Biological Chemistry, 2010, 285, 620-630.	1.6	16
69	Epac and Phospholipase Cïµ Regulate Ca2+ Release in the Heart by Activation of Protein Kinase Cïµ and Calcium-Calmodulin Kinase II. Journal of Biological Chemistry, 2009, 284, 1514-1522.	1.6	171
70	Regulation of Immature Dendritic Cell Migration by RhoA Guanine Nucleotide Exchange Factor Arhgef5. Journal of Biological Chemistry, 2009, 284, 28599-28606.	1.6	56
71	Supraspinal Gβγâ€dependent stimulation of PLCβ ₃ originating from G inhibitory proteinâ€Î¼ opioio receptorâ€coupling is necessary for morphine induced acute hyperalgesia. Journal of Neurochemistry, 2009, 111, 171-180.	2.1	35
72	Evaluating Docking Methods for Prediction of Binding Affinities of Small Molecules to the G Protein <i>βγ</i> Subunits. Journal of Chemical Information and Modeling, 2009, 49, 437-443.	2.5	13

ALAN V SMRCKA

#	Article	IF	CITATIONS
73	Biophysical characterization of Gβγ "hot spot―binding small molecules: explaining Gβγ "hot spot―bin effector selectivity. FASEB Journal, 2009, 23, 583.3.	ding	0
74	Phospholipase Cε(PLCε)â€mediated activation of classical transient receptor potential 6 (TRPC6) increases barrier function of glomerular podocytes. FASEB Journal, 2009, 23, 804.12.	0.2	0
75	Regulation of the G protein βγ subunits through the covalent modification of Gβ. FASEB Journal, 2009, 23, 583.4.	0.2	0
76	A Novel GÎ ² Î ³ -Subunit Inhibitor Selectively Modulates μ-Opioid-Dependent Antinociception and Attenuates Acute Morphine-Induced Antinociceptive Tolerance and Dependence. Journal of Neuroscience, 2008, 28, 12183-12189.	1.7	67
77	G Protein β γ Subunits as Targets for Small Molecule Therapeutic Development. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 382-395.	0.6	42
78	PLCε Selectively Transduces Thrombin Versus LPA Signals to Astrocyte Proliferation Through Rap1 and Rho. FASEB Journal, 2008, 22, 805.11.	0.2	0
79	Analysis of direct binding of small molecules to G protein βγ subunits: biophysical analysis and binding site mapping. FASEB Journal, 2008, 22, 907.3.	0.2	0
80	Redox Regulation of G protein $\hat{I}^2\hat{I}^3$ Subunits. FASEB Journal, 2008, 22, 908.12.	0.2	0
81	Subunit Dissociation and Diffusion Determine the Subcellular Localization of Rod and Cone Transducins. Journal of Neuroscience, 2007, 27, 5484-5494.	1.7	66
82	Epac-mediated Activation of Phospholipase CÉ> Plays a Critical Role in β-Adrenergic Receptor-dependent Enhancement of Ca2+ Mobilization in Cardiac Myocytes. Journal of Biological Chemistry, 2007, 282, 5488-5495.	1.6	158
83	Analysis and Pharmacological Targeting of Phospholipase C Î ² Interactions with G Proteins. Methods in Enzymology, 2007, 434, 29-48.	0.4	7
84	Signaling by a Non-dissociated Complex of G Protein βγ and α Subunits Stimulated by a Receptor-independent Activator of G Protein Signaling, AGS8. Journal of Biological Chemistry, 2007, 282, 19938-19947.	1.6	38
85	Phospholipase Cε is a nexus for Rho and Rap-mediated G protein-coupled receptor-induced astrocyte proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15543-15548.	3.3	67
86	Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nature Genetics, 2006, 38, 1397-1405.	9.4	510
87	Differential Targeting of GÂÂ-Subunit Signaling with Small Molecules. Science, 2006, 312, 443-446.	6.0	214
88	A Docking Site for G Protein βγ Subunits on the Parathyroid Hormone 1 Receptor Supports Signaling through Multiple Pathways. Molecular Endocrinology, 2006, 20, 136-146.	3.7	50
89	G-protein-coupled Receptor Agonists Activate Endogenous Phospholipase Cϵ and Phospholipase Cβ3 in a Temporally Distinct Manner. Journal of Biological Chemistry, 2006, 281, 2639-2648.	1.6	76
90	Identification of a receptor-independent activator of G protein signaling (AGS8) in ischemic heart and its interaction with GbetaÂ. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 797-802.	3.3	66

#	Article	IF	CITATIONS
91	GPCR Independent Signaling by AGS8 Protein Through Formation of Quaternary Complex with Gβγ, Gα and PLCβ2. FASEB Journal, 2006, 20, A257.	0.2	0
92	Ric-8 Enhances G Protein βγ-Dependent Signaling in Response to βγ-Binding Peptides in Intact Cells. Molecular Pharmacology, 2005, 68, 129-136.	1.0	33
93	Phospholipase C ε Modulates β-Adrenergic Receptor– Dependent Cardiac Contraction and Inhibits Cardiac Hypertrophy. Circulation Research, 2005, 97, 1305-1313.	2.0	118
94	Regulatory Interactions between the Amino Terminus of G-protein βγ Subunits and the Catalytic Domain of Phospholipase Cβ2. Journal of Biological Chemistry, 2005, 280, 10174-10181.	1.6	54
95	Structural and Molecular Characterization of a Preferred Protein Interaction Surface on G Protein βγ Subunitsâ€. Biochemistry, 2005, 44, 10593-10604.	1.2	74
96	Purification of Phospholipase C \hat{I}^2 and Phospholipase C $\hat{I}\mu$ from Sf9 Cells. , 2004, 237, 55-64.		6
97	Gβγ Activation of Src Induces Caveolae-mediated Endocytosis in Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 48055-48062.	1.6	86
98	Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins. Biochemical Journal, 2004, 378, 129-139.	1.7	99
99	Directional Sensing Requires Gβγ-Mediated PAK1 and PIXα-Dependent Activation of Cdc42. Cell, 2003, 114, 215-227.	13.5	362
100	Stimulation of Cellular Signaling and G Protein Subunit Dissociation by G Protein βγ Subunit-binding Peptides. Journal of Biological Chemistry, 2003, 278, 19634-19641.	1.6	64
101	Receptor- and Nucleotide Exchange-independent Mechanisms for Promoting G Protein Subunit Dissociation. Journal of Biological Chemistry, 2003, 278, 34747-34750.	1.6	59
102	Discovery of Ligands for Î ² Î ³ Subunits from Phage-Displayed Peptide Libraries. Methods in Enzymology, 2002, 344, 557-576.	0.4	7
103	Characterization of a Phospholipase C β2-Binding Site Near the Amino-terminal Coiled-coil of G Protein βγ Subunits. Journal of Biological Chemistry, 2001, 276, 11246-11251.	1.6	19
104	Role of the Î ³ Subunit Prenyl Moiety in G Protein Î ² Î ³ Complex Interaction with Phospholipase CÎ ² . Journal of Biological Chemistry, 2001, 276, 41797-41802.	1.6	36
105	Selective Role of G Protein Î ³ Subunits in Receptor Interaction. Journal of Biological Chemistry, 2000, 275, 38961-38964.	1.6	47
106	Roles of PLC-2 and -3 and PI3K in Chemoattractant-Mediated Signal Transduction. Science, 2000, 287, 1046-1049.	6.0	817
107	Identification of a Structural Element in Phospholipase C β2 That Interacts with G Protein βγ Subunits. Journal of Biological Chemistry, 1998, 273, 7148-7154.	1.6	72
108	Pertussis Toxin-sensitive Activation of Phospholipase C by the C5a and fMet-Leu-Phe Receptors. Journal of Biological Chemistry, 1996, 271, 13430-13434.	1.6	121

#	Article	IF	CITATIONS
109	Phospholipase C β2 Association with Phospholipid Interfaces Assessed by Fluorescence Resonance Energy Transfer. Journal of Biological Chemistry, 1996, 271, 25071-25078.	1.6	60
110	A Tyrosine Kinase Signaling Pathway Accounts for the Majority of Phosphatidylinositol 3,4,5-Trisphosphate Formation in Chemoattractant-stimulated Human Neutrophils. Journal of Biological Chemistry, 1996, 271, 25204-25207.	1.6	109
111	Regulation of phospholipase C by G proteins. Trends in Biochemical Sciences, 1992, 17, 502-506.	3.7	197
112	Purification and characterization of large and small subunits of ribulose 1,5-bisphosphate carboxylase expressed separately in Escherichia coli. Archives of Biochemistry and Biophysics, 1991, 286, 6-13.	1.4	18
113	HPLC Separation and Indirect Ultraviolet Detection of Phosphorylated Sugars. Plant Physiology, 1988, 86, 615-618.	2.3	16