Nan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/866466/publications.pdf Version: 2024-02-01

NAN HUANC

#	Article	IF	CITATIONS
1	Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species. Water Research, 2016, 98, 190-198.	11.3	331
2	Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products. Water Research, 2018, 141, 109-125.	11.3	132
3	UV/chlorine as an advanced oxidation process for the degradation of benzalkonium chloride: Synergistic effect, transformation products and toxicity evaluation. Water Research, 2017, 114, 246-253.	11.3	112
4	Light-emitting diodes as an emerging UV source for UV/chlorine oxidation: Carbamazepine degradation and toxicity changes. Chemical Engineering Journal, 2017, 310, 148-156.	12.7	87
5	Predicting the Contribution of Chloramines to Contaminant Decay during Ultraviolet/Hydrogen Peroxide Advanced Oxidation Process Treatment for Potable Reuse. Environmental Science & Technology, 2019, 53, 4416-4425.	10.0	66
6	Balance of activation and ring-breaking for toluene oxidation over CuO-MnO bimetallic oxides. Journal of Hazardous Materials, 2021, 415, 125637.	12.4	49
7	Elimination of chlorine-refractory carbamazepine by breakpoint chlorination: Reactive species and oxidation byproducts. Water Research, 2018, 129, 115-122.	11.3	43
8	2-Phosphonobutane-1,2,4-tricarboxylic acid (PBTCA) degradation by ozonation: Kinetics, phosphorus transformation, anti-precipitation property changes and phosphorus removal. Water Research, 2019, 148, 334-343.	11.3	43
9	Degradation of dodecyl dimethyl benzyl ammonium chloride (DDBAC) as a non-oxidizing biocide in reverse osmosis system using UV/persulfate: Kinetics, degradation pathways, and toxicity evaluation. Chemical Engineering Journal, 2018, 352, 283-292.	12.7	39
10	Balance between Reducibility and N ₂ O Adsorption Capacity for the N ₂ O Decomposition: Cu _{<i>x</i>} Co _{<i>y</i>} Catalysts as an Example. Environmental Science & Technology, 2019, 53, 10379-10386.	10.0	36
11	A study of synergistic oxidation between ozone and chlorine on benzalkonium chloride degradation: Reactive species and degradation pathway. Chemical Engineering Journal, 2020, 382, 122856.	12.7	35
12	UV/chlorine oxidation of the phosphonate antiscalant 1-Hydroxyethane-1, 1-diphosphonic acid (HEDP) used for reverse osmosis processes: Organic phosphorus removal and scale inhibition properties changes. Journal of Environmental Management, 2019, 237, 180-186.	7.8	34
13	Enhancement effect among a UV, persulfate, and copper (UV/PS/Cu2+) system on the degradation of nonoxidizing biocide: The kinetics, radical species, and degradation pathway. Chemical Engineering Journal, 2020, 382, 122312.	12.7	32
14	<i>N</i> -Nitrosodimethylamine Formation during UV/Hydrogen Peroxide and UV/Chlorine Advanced Oxidation Process Treatment Following Reverse Osmosis for Potable Reuse. Environmental Science & Technology, 2020, 54, 15465-15475.	10.0	31
15	Comparison of UV/H2O2 and UV/PS processes for the treatment of reverse osmosis concentrate from municipal wastewater reclamation. Chemical Engineering Journal, 2020, 388, 124260.	12.7	25
16	Promotive effects of vacuum-UV/UV (185/254Ânm) light on elimination of recalcitrant trace organic contaminants by UV-AOPs during wastewater treatment and reclamation: A review. Science of the Total Environment, 2022, 818, 151776.	8.0	18
17	Evolution of low molecular weight organic compounds during ultrapure water production process: A pilot-scale study. Science of the Total Environment, 2022, 830, 154713.	8.0	16
18	Elimination of amino trimethylene phosphonic acid (ATMP) antiscalant in reverse osmosis concentrate using ozone: Anti-precipitation property changes and phosphorus removal. Chemosphere, 2022, 291, 133027.	8.2	14

Nan Huang

#	Article	IF	CITATIONS
19	Study on synergistic effect of ozone and monochloramine on the degradation of chloromethylisothiazolinone biocide. Science of the Total Environment, 2021, 754, 141598.	8.0	8
20	Removal of methylisothiazolinone biocide from wastewater by VUV/UV advanced oxidation process: Kinetics, mechanisms and toxicity. Journal of Environmental Management, 2022, 315, 115107.	7.8	8
21	Ozonation of phosphonate antiscalant 1-hydroxyethane-1,1-diphosphonic acid in reverse osmosis concentrate: Kinetics, phosphorus transformation, and anti-precipitation property changes. Separation and Purification Technology, 2022, 297, 121385.	7.9	7
22	Oxidation of benzalkonium chloride by gamma irradiation: kinetics and decrease in toxicity. Journal of Radioanalytical and Nuclear Chemistry, 2017, 312, 631-637.	1.5	4
23	Advanced oxidation of dodecyl dimethyl benzyl ammonium chloride by VUV/UV/chlorine: Synergistic effect, radicals, and degradation pathway. Separation and Purification Technology, 2022, 292, 121012.	7.9	4
24	Degradation of chloromethylisothiazolinone antimicrobial by Vacuum-Ultraviolet/Ultraviolet irradiation: Reactive species, degradation pathway and toxicity evaluation. Chemosphere, 2022, 302, 134821.	8.2	1