
Diego E Rincon-Limas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8664539/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	TDP-35, a truncated fragment of TDP-43, induces dose-dependent toxicity and apoptosis in flies. Neural Regeneration Research, 2022, 17, 2441.	3.0	0
2	Molecular, functional, and pathological aspects of TDP-43 fragmentation. IScience, 2021, 24, 102459.	4.1	25
3	TDP-43 and ER Stress in Neurodegeneration: Friends or Foes?. Frontiers in Molecular Neuroscience, 2021, 14, 772226.	2.9	9
4	PhotoGal4: A Versatile Light-Dependent Switch for Spatiotemporal Control of Gene Expression in Drosophila Explants. IScience, 2020, 23, 101308.	4.1	9
5	Aß40 displays amyloidogenic properties in the non-transgenic mouse brain but does not exacerbate Aß42 toxicity in Drosophila. Alzheimer's Research and Therapy, 2020, 12, 132.	6.2	3
6	NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models. PLoS Genetics, 2020, 16, e1008590.	3.5	30
7	Title is missing!. , 2020, 16, e1008590.		Ο
8	Title is missing!. , 2020, 16, e1008590.		0
9	Title is missing!. , 2020, 16, e1008590.		0
10	Title is missing!. , 2020, 16, e1008590.		0
11	Engineering Chaperones for Alzheimer's Disease: Insights from Drosophila Models. Heat Shock Proteins, 2019, , 259-272.	0.2	0
12	Lmx1a is required for the development of the ovarian stem cell niche in Drosophila. Development (Cambridge), 2018, 145, .	2.5	16
13	Short AÎ ² peptides attenuate AÎ ² 42 toxicity in vivo. Journal of Experimental Medicine, 2018, 215, 283-301.	8.5	56
14	Bringing Light to Transcription: The Optogenetics Repertoire. Frontiers in Genetics, 2018, 9, 518.	2.3	49
15	Engineered Hsp70 chaperones prevent Aβ42-induced memory impairments in a Drosophila model of Alzheimer's disease. Scientific Reports, 2018, 8, 9915.	3.3	26
16	secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids. Fly, 2017, 11, 179-184.	1.7	17
17	Drosophila models of prionopathies: insight into prion protein function, transmission, and neurotoxicity. Current Opinion in Genetics and Development, 2017, 44, 141-148.	3.3	18
18	Anti-Aβ single-chain variable fragment antibodies restore memory acquisition in a Drosophila model of Alzheimer's disease. Scientific Reports, 2017, 7, 11268.	3.3	13

DIEGO E RINCON-LIMAS

#	Article	IF	CITATIONS
19	A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking. PLoS ONE, 2017, 12, e0173565.	2.5	22
20	Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer× ³ s disease. Data in Brief, 2016, 7, 1707-1719.	1.0	2
21	A single amino acid (Asp159) from the dog prion protein suppresses the toxicity of the mouse prion protein in Drosophila. Neurobiology of Disease, 2016, 95, 204-209.	4.4	16
22	Holdase activity of secreted Hsp70 masks amyloid-β42 neurotoxicity in <i>Drosophila</i> . Proceedings of the United States of America, 2016, 113, E5212-21.	7.1	60
23	Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry. Journal of Proteomics, 2016, 139, 103-121.	2.4	48
24	P2-077: Identification of potential modifiers of Alzheimer's disease pathology by quantitative mass spectrometry and drosophila genetics. , 2015, 11, P512-P513.		0
25	P1-084: Exploring the toxicity of short amyloid-beta peptides in vivo. , 2015, 11, P371-P371.		0
26	Modeling the complex pathology of Alzheimer's disease in Drosophila. Experimental Neurology, 2015, 274, 58-71.	4.1	54
27	Protein Quality Control in Brain Aging: Lessons from Protein Misfolding Disorders in Drosophila. Healthy Ageing and Longevity, 2015, , 191-211.	0.2	Ο
28	Anti-Aβ single-chain variable fragment antibodies exert synergistic neuroprotective activities in <i>Drosophila</i> models of Alzheimer's disease. Human Molecular Genetics, 2015, 24, 6093-6105.	2.9	20
29	Launching Hsp70 neuroprotection. Cell Cycle, 2014, 13, 1657-1658.	2.6	4
30	KCNC3R420H, a K+ channel mutation causative in spinocerebellar ataxia 13 displays aberrant intracellular trafficking. Neurobiology of Disease, 2014, 71, 270-279.	4.4	20
31	Combined Pharmacological Induction of Hsp70 Suppresses Prion Protein Neurotoxicity in Drosophila. PLoS ONE, 2014, 9, e88522.	2.5	11
32	pâ^†TubHA4C, a new versatile vector for constitutive expression in Drosophila. Molecular Biology Reports, 2013, 40, 5407-5415.	2.3	5
33	Alternative Models of Prion Diseases. , 2013, , 183-199.		0
34	Polar substitutions in helix 3 of the prion protein produce transmembrane isoforms that disturb vesicle trafficking. Human Molecular Genetics, 2013, 22, 4253-4266.	2.9	7
35	Purification of Transcripts and Metabolites from Drosophila Heads. Journal of Visualized Experiments, 2013, , e50245.	0.3	10

Unraveling the Basis of Neurodegeneration using the Drosophila Eye., 2013, , 271-293.

6

DIEGO E RINCON-LIMAS

#	Article	IF	CITATIONS
37	Drosophila Models of Proteinopathies: the Little Fly that Could. Current Pharmaceutical Design, 2012, 18, 1108-1122.	1.9	48
38	Differential Activation of the ER Stress Factor XBP1 by Oligomeric Assemblies. Neurochemical Research, 2012, 37, 1707-1717.	3.3	45
39	Pulling rabbits to reveal the secrets of the prion protein. Communicative and Integrative Biology, 2011, 4, 262-266.	1.4	21
40	The ER stress factor XBP1s prevents amyloid-β neurotoxicity. Human Molecular Genetics, 2011, 20, 2144-2160.	2.9	258
41	Amyloid-β42 Interacts Mainly with Insoluble Prion Protein in the Alzheimer Brain. Journal of Biological Chemistry, 2011, 286, 15095-15105.	3.4	75
42	Sequence-dependent Prion Protein Misfolding and Neurotoxicity. Journal of Biological Chemistry, 2010, 285, 36897-36908.	3.4	39
43	Exploring prion protein biology in flies. Prion, 2010, 4, 1-8.	1.8	18
44	In Vivo Generation of Neurotoxic Prion Protein: Role for Hsp70 in Accumulation of Misfolded Isoforms. PLoS Genetics, 2009, 5, e1000507.	3.5	76
45	Comparative analysis of genetic modifiers in Drosophila points to common and distinct mechanisms of pathogenesis among polyglutamine diseases. Human Molecular Genetics, 2008, 17, 376-390.	2.9	75
46	The level of DLDB/CHIP controls the activity of the LIM homeodomain protein Apterous: evidence for a functional tetramer complex in vivo. EMBO Journal, 2000, 19, 2602-2614.	7.8	48
47	Conserved overlapping and reciprocal expression of msh/Msx1 and apterous/Lhx2 in Drosophila and mice. Mechanisms of Development, 2000, 99, 177-181.	1.7	18
48	Conservation of the expression and function of apterous orthologs in Drosophila and mammals. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2165-2170.	7.1	79
49	The relative expression amounts of apterous and its co-factor dLdb/Chip are critical for dorso-ventral compartmentalization in the Drosophila wing. EMBO Journal, 1998, 17, 6846-6853.	7.8	83
50	Protein complex formation between Msx1 and Lhx2 homeoproteins is incompatible with DNA binding activity. Differentiation, 1998, 63, 151-157.	1.9	36
51	Ubiquitous and Neuronal DNA-Binding Proteins Interact with a Negative Regulatory Element of the Human Hypoxanthine Phosphoribosyltransferase Gene. Molecular and Cellular Biology, 1995, 15, 6561-6571.	2.3	10
52	5′-flanking sequences of the human HPRT gene direct neuronal expression in the brain of transgenic mice. Journal of Neuroscience Research, 1994, 38, 259-267.	2.9	16
53	HGH isoforms: cDNA expression, adipogenic activity and production in cell culture. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1172, 49-54.	2.4	6
54	Association between genetic variation at the porphobilinogen deaminase gene and schizophrenia. Schizophrenia Research, 1993, 8, 211-221.	2.0	25

#	Article	IF	CITATIONS
55	An Mspl RFLP at the D17S258 locus. Nucleic Acids Research, 1991, 19, 5482-5482.	14.5	0
56	TwoMsplRFLPs at the D17S258 locus. Nucleic Acids Research, 1990, 18, 7196-7196.	14.5	4
57	New vectors for the efficient expression of mammalian genes in cultured cells. Gene, 1990, 87, 291-294.	2.2	8