José Jm Órfão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8664419/publications.pdf

Version: 2024-02-01

18436 19690 14,522 156 62 117 citations h-index g-index papers 159 159 159 12449 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modification of the surface chemistry of activated carbons. Carbon, 1999, 37, 1379-1389.	5.4	2,642
2	Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel, 1999, 78, 349-358.	3.4	655
3	Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research, 2004, 38, 2043-2052.	5.3	655
4	The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2010, 99, 353-363.	10.8	562
5	Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon, 2003, 41, 811-821.	5.4	492
6	Characterization of Active Sites on Carbon Catalysts. Industrial & Engineering Chemistry Research, 2007, 46, 4110-4115.	1.8	308
7	Adsorption of a reactive dye on chemically modified activated carbons—Influence of pH. Journal of Colloid and Interface Science, 2006, 296, 480-489.	5.0	265
8	Activated carbon catalytic ozonation of oxamic and oxalic acids. Applied Catalysis B: Environmental, 2008, 79, 237-243.	10.8	257
9	Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. I. Influence of surface chemical groups. Applied Catalysis A: General, 1999, 184, 153-160.	2.2	240
10	Adsorption of simple aromatic compounds on activated carbons. Journal of Colloid and Interface Science, 2006, 293, 128-136.	5.0	236
11	Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts. Applied Catalysis B: Environmental, 2010, 99, 198-205.	10.8	221
12	Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts. Carbon, 2010, 48, 4369-4381.	5.4	176
13	MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective hydrogenation. Carbon, 2008, 46, 1194-1207.	5.4	172
14	Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties. Journal of Catalysis, 2012, 293, 165-174.	3.1	165
15	Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons. Journal of Hazardous Materials, 2009, 162, 736-742.	6.5	157
16	Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene. Carbon, 2004, 42, 2807-2813.	5.4	150
17	Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents. Applied Catalysis B: Environmental, 2009, 88, 341-350.	10.8	141
18	Catalytic ozonation of sulphamethoxazole in the presence of carbon materials: Catalytic performance and reaction pathways. Journal of Hazardous Materials, 2012, 239-240, 167-174.	6.5	141

#	Article	IF	CITATIONS
19	Catalytic oxidation of toluene on Ce–Co and La–Co mixed oxides synthesized by exotemplating and evaporation methods. Catalysis Today, 2015, 244, 161-171.	2.2	129
20	Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Applied Catalysis B: Environmental, 2011, 103, 190-199.	10.8	116
21	Production, characterization and application of activated carbon from brewer's spent grain lignin. Bioresource Technology, 2010, 101, 2450-2457.	4.8	114
22	Easy method to prepare N-doped carbon nanotubes by ball milling. Carbon, 2015, 91, 114-121.	5 . 4	111
23	Manganese oxide catalysts synthesized by exotemplating for the total oxidation of ethanol. Applied Catalysis B: Environmental, 2009, 93, 30-37.	10.8	109
24	Ozonation of textile effluents and dye solutions under continuous operation: Influence of operating parameters. Journal of Hazardous Materials, 2006, 137, 1664-1673.	6.5	108
25	Activated Carbon Supported Metal Catalysts for Nitrate and Nitrite Reduction in Water. Catalysis Letters, 2008, 126, 253-260.	1.4	107
26	Gold supported on carbon nanotubes for the selective oxidation of glycerol. Journal of Catalysis, 2012, 285, 83-91.	3.1	107
27	Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon. Water Research, 2005, 39, 1461-1470.	5. 3	104
28	A novel ceria–activated carbon composite for the catalytic ozonation of carboxylic acids. Catalysis Communications, 2008, 9, 2121-2126.	1.6	103
29	Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition. Applied Catalysis B: Environmental, 2009, 91, 441-448.	10.8	102
30	Influence of activated carbon surface chemistry on the activity of Au/AC catalysts in glycerol oxidation. Journal of Catalysis, 2011, 281, 119-127.	3.1	101
31	Catalytic oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2005, 57, 117-123.	10.8	100
32	Ozone Decomposition in Water Catalyzed by Activated Carbon:Â Influence of Chemical and Textural Properties. Industrial & Engineering Chemistry Research, 2006, 45, 2715-2721.	1.8	99
33	Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 2015, 244, 103-114.	2.2	99
34	Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. Applied Catalysis A: General, 2001, 218, 307-318.	2.2	98
35	Synthesis and Characterization of Manganese Oxide Catalysts for the Total Oxidation of Ethyl Acetate. Topics in Catalysis, 2009, 52, 470-481.	1.3	97
36	Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds. Chemosphere, 2009, 74, 818-824.	4.2	97

#	Article	IF	CITATIONS
37	Ozonation of aniline promoted by activated carbon. Chemosphere, 2007, 67, 809-815.	4.2	96
38	Methane decomposition on Ni–Cu alloyed Raney-type catalysts. International Journal of Hydrogen Energy, 2009, 34, 4763-4772.	3.8	95
39	Review and evaluation of the approximations to the temperature integral. AICHE Journal, 2007, 53, 2905-2915.	1.8	90
40	Enhanced direct production of sorbitol by cellulose ball-milling. Green Chemistry, 2015, 17, 2973-2980.	4.6	90
41	Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Applied Catalysis B: Environmental, 2016, 192, 296-303.	10.8	90
42	Photocatalytic nitrate reduction over Pd–Cu/TiO2. Chemical Engineering Journal, 2014, 251, 123-130.	6.6	88
43	Pd–Cu/AC and Pt–Cu/AC catalysts for nitrate reduction with hydrogen: Influence of calcination and reduction temperatures. Chemical Engineering Journal, 2010, 165, 78-88.	6.6	87
44	Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catalysis Today, 2012, 180, 148-154.	2.2	85
45	Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon. Applied Catalysis B: Environmental, 2008, 83, 150-159.	10.8	84
46	Hydrogenation of nitrobenzene over nickel nanoparticles stabilized by filamentous carbon. Applied Catalysis A: General, 2008, 351, 204-209.	2.2	84
47	Stabilized gold on cerium-modified cryptomelane: Highly active in low-temperature CO oxidation. Journal of Catalysis, 2014, 309, 58-65.	3.1	83
48	Oxidative dehydrogenation of ethylbenzene on activated carbon catalysts. Applied Catalysis A: General, 2000, 196, 43-54.	2.2	82
49	Carbon supported Ru-Ni bimetallic catalysts for the enhanced one-pot conversion of cellulose to sorbitol. Applied Catalysis B: Environmental, 2017, 217, 265-274.	10.8	82
50	Kinetic analysis of thermogravimetric data obtained under linear temperature programming—a method based on calculations of the temperature integral by interpolation. Thermochimica Acta, 2002, 390, 195-211.	1.2	81
51	Nitrate reduction in water catalysed by Pd–Cu on different supports. Desalination, 2011, 279, 367-374.	4.0	81
52	Catalytic decomposition of methane on Raney-type catalysts. Applied Catalysis A: General, 2008, 348, 103-112.	2.2	78
53	Exotemplated ceria catalysts with gold for CO oxidation. Applied Catalysis A: General, 2010, 381, 150-160.	2,2	74
54	Ceria and cerium-based mixed oxides as ozonation catalysts. Chemical Engineering Journal, 2012, 200-202, 499-505.	6.6	74

#	Article	IF	Citations
55	Zero-valent iron supported on nitrogen-containing activated carbon for catalytic wet peroxide oxidation of phenol. Applied Catalysis B: Environmental, 2014, 154-155, 329-338.	10.8	74
56	The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine. Chemical Engineering Journal, 2014, 241, 66-76.	6.6	69
57	Pdâ^'Cu and Ptâ^'Cu Catalysts Supported on Carbon Nanotubes for Nitrate Reduction in Water. Industrial & Engineering Chemistry Research, 2010, 49, 7183-7192.	1.8	68
58	Enhancement of the selectivity to dihydroxyacetone in glycerol oxidation using gold nanoparticles supported on carbon nanotubes. Catalysis Communications, 2011, 16, 64-69.	1.6	68
59	Catalytic oxidation of ethyl acetate over a cesium modified cryptomelane catalyst. Applied Catalysis B: Environmental, 2009, 88, 550-556.	10.8	67
60	Carbon Monoxide Oxidation Catalysed by Exotemplated Manganese Oxides. Catalysis Letters, 2010, 134, 217-227.	1.4	65
61	Catalytic ozonation of organic pollutants in the presence of cerium oxide–carbon composites. Applied Catalysis B: Environmental, 2011, 102, 539-546.	10.8	65
62	Effect of cobalt loading on the solid state properties and ethyl acetate oxidation performance of cobalt-cerium mixed oxides. Journal of Colloid and Interface Science, 2017, 496, 141-149.	5.0	64
63	Nitrogen-doped graphene-based materials for advanced oxidation processes. Catalysis Today, 2015, 249, 192-198.	2.2	62
64	Synergistic effect of bimetallic Au-Pd supported on ceria-zirconia mixed oxide catalysts for selective oxidation of glycerol. Applied Catalysis B: Environmental, 2016, 197, 222-235.	10.8	62
65	Catalytic conversion of cellulose to sorbitol over Ru supported on biomass-derived carbon-based materials. Applied Catalysis B: Environmental, 2019, 256, 117826.	10.8	61
66	Nitrate reduction with hydrogen in the presence of physical mixtures with mono and bimetallic catalysts and ions in solution. Applied Catalysis B: Environmental, 2011, 102, 424-432.	10.8	58
67	Catalytic oxidation of ethyl acetate on cerium-containing mixed oxides. Applied Catalysis A: General, 2014, 472, 101-112.	2.2	58
68	Hydrogenation of chloronitrobenzenes over filamentous carbon stabilized nickel nanoparticles. Catalysis Communications, 2009, 10, 1203-1206.	1.6	56
69	Methane decomposition on Fe–Cu Raney-type catalysts. Fuel Processing Technology, 2009, 90, 1234-1240.	3.7	55
70	Hydrogen production via methane decomposition on Raney-type catalysts. International Journal of Hydrogen Energy, 2010, 35, 9795-9800.	3.8	55
71	Metal assessment for the catalytic reduction of bromate in water under hydrogen. Chemical Engineering Journal, 2015, 263, 119-126.	6.6	54
72	Ozonation of sulfamethoxazole promoted by MWCNT. Catalysis Communications, 2013, 35, 82-87.	1.6	52

#	Article	IF	CITATIONS
73	Adsorption of dyes on carbon xerogels and templated carbons: influence of surface chemistry. Adsorption, 2011, 17, 431-441.	1.4	50
74	Ozonation of bezafibrate promoted by carbon materials. Applied Catalysis B: Environmental, 2013, 140-141, 82-91.	10.8	49
75	Nitrate Reduction Catalyzed by Pd–Cu and Pt–Cu Supported on Different Carbon Materials. Catalysis Letters, 2010, 139, 97-104.	1.4	48
76	Selective Oxidation of Glycerol Catalyzed by Rh/Activated Carbon: Importance of Support Surface Chemistry. Catalysis Letters, 2011, 141, 420-431.	1.4	48
77	Modification of carbon nanotubes by ball-milling to be used as ozonation catalysts. Catalysis Today, 2015, 249, 199-203.	2.2	48
78	Nitrogen-doped carbon xerogels as catalysts for advanced oxidation processes. Catalysis Today, 2015, 241, 73-79.	2.2	48
79	Carbon nanofibers doped with nitrogen for the continuous catalytic ozonation of organic pollutants. Chemical Engineering Journal, 2016, 293, 102-111.	6.6	47
80	Tailored activated carbons as catalysts in biodecolourisation of textile azo dyes. Applied Catalysis B: Environmental, 2010, 94, 179-185.	10.8	46
81	Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes. Chinese Journal of Catalysis, 2014, 35, 896-905.	6.9	46
82	Pd, Pt, and Pt–Cu Catalysts Supported on Carbon Nanotube (CNT) for the Selective Oxidation of Glycerol in Alkaline and Base-Free Conditions. Industrial & Description of Section 2016, 55, 8548-8556.	1.8	46
83	Highly dispersed ceria on activated carbon for the catalyzed ozonation of organic pollutants. Applied Catalysis B: Environmental, 2012, 113-114, 308-317.	10.8	44
84	Highly efficient reduction of bromate to bromide over mono and bimetallic ZSM5 catalysts. Green Chemistry, 2015, 17, 4247-4254.	4.6	44
85	Mono and bimetallic NaY catalysts with high performance in nitrate reduction in water. Chemical Engineering Journal, 2015, 281, 411-417.	6.6	43
86	Selective Oxidation of Glycerol Catalyzed by Gold Supported on Multiwalled Carbon Nanotubes with Different Surface Chemistries. Industrial & Engineering Chemistry Research, 2012, 51, 15884-15894.	1.8	42
87	Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. Journal of Hazardous Materials, 2012, 239-240, 249-256.	6.5	42
88	Direct conversion of cellulose to sorbitol over ruthenium catalysts: Influence of the support. Catalysis Today, 2017, 279, 244-251.	2.2	41
89	Catalytic reduction of bromate over monometallic catalysts on different powder and structured supports. Chemical Engineering Journal, 2017, 309, 197-205.	6.6	41
90	Catalytic ozonation of organic micropollutants using carbon nanofibers supported on monoliths. Chemical Engineering Journal, 2013, 230, 115-123.	6.6	40

#	Article	IF	Citations
91	Effect of activated carbon surface chemistry on the activity of ZVI/AC catalysts for Fenton-like oxidation of phenol. Catalysis Today, 2015, 240, 73-79.	2.2	40
92	A simplified method for determination of lignocellulosic materials pyrolysis kinetics from isothermal thermogravimetric experiments. Thermochimica Acta, 2001, 380, 67-78.	1.2	39
93	Oxidative dehydrogenation of ethylbenzene on activated carbon fibers. Carbon, 2002, 40, 2393-2401.	5.4	39
94	Exotemplated copper, cobalt, iron, lanthanum and nickel oxides for catalytic oxidation of ethyl acetate. Journal of Environmental Chemical Engineering, 2013, 1, 795-804.	3.3	39
95	Different methodologies for synthesis of nitrogen doped carbon nanotubes and their use in catalytic wet air oxidation. Applied Catalysis A: General, 2017, 548, 62-70.	2.2	39
96	Cooperative action of heteropolyacids and carbon supported Ru catalysts for the conversion of cellulose. Catalysis Today, 2018, 301, 65-71.	2.2	39
97	Mixture effects during the oxidation of toluene, ethyl acetate and ethanol over a cryptomelane catalyst. Journal of Hazardous Materials, 2011, 185, 1236-1240.	6.5	38
98	Adsorption of SO2 using vanadium and vanadium–copper supported on activated carbon. Catalysis Today, 2003, 78, 203-210.	2.2	37
99	Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon. Applied Surface Science, 2008, 254, 3497-3503.	3.1	37
100	Nitrate reduction over a Pd-Cu/MWCNT catalyst: application to a polluted groundwater. Environmental Technology (United Kingdom), 2012, 33, 2353-2358.	1.2	37
101	Catalytic oxidation of ethyl acetate over La-Co and La-Cu oxides. Journal of Environmental Chemical Engineering, 2014, 2, 344-355.	3.3	37
102	Ceria dispersed on carbon materials for the catalytic ozonation of sulfamethoxazole. Journal of Environmental Chemical Engineering, 2013, 1, 260-269.	3.3	36
103	Ozonation of erythromycin over carbon materials and ceria dispersed on carbon materials. Chemical Engineering Journal, 2014, 250, 366-376.	6.6	36
104	Direct catalytic production of sorbitol from waste cellulosic materials. Bioresource Technology, 2017, 232, 152-158.	4.8	34
105	Carbon xerogels and ceria–carbon xerogel materials as catalysts in the ozonation of organic pollutants. Applied Catalysis B: Environmental, 2012, 126, 22-28.	10.8	33
106	Glycerol oxidation with gold supported on carbon xerogels: Tuning selectivities by varying mesopore sizes. Applied Catalysis B: Environmental, 2012, 115-116, 1-6.	10.8	33
107	Selective Oxidation of Glycerol over Platinum-Based Catalysts Supported on Carbon Nanotubes. Industrial & Damp; Engineering Chemistry Research, 2013, 52, 17390-17398.	1.8	33
108	Volatile organic compounds abatement over copper-based catalysts: Effect of support. Inorganica Chimica Acta, 2017, 455, 473-482.	1.2	33

#	Article	IF	Citations
109	Electrochemical oxidation of aniline at mono and bimetallic electrocatalysts supported on carbon nanotubes. Chemical Engineering Journal, 2015, 260, 309-315.	6.6	32
110	Bimetallic activated carbon supported catalysts for the hydrogen reduction of bromate in water. Catalysis Today, 2015, 249, 213-219.	2.2	31
111	Hydrolytic hydrogenation of cellulose to ethylene glycol over carbon nanotubes supported Ru–W bimetallic catalysts. Cellulose, 2018, 25, 2259-2272.	2.4	31
112	Catalytic oxidation of methyl-isobutyl-ketone over basic zeolites. Applied Catalysis B: Environmental, 2004, 51, 129-133.	10.8	30
113	Composites of manganese oxide with carbon materials as catalysts for the ozonation of oxalic acid. Journal of Hazardous Materials, 2012, 213-214, 133-139.	6.5	30
114	Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides. Molecules, 2016, 21, 644.	1.7	29
115	Development of Novel Mesoporous Carbon Materials for the Catalytic Ozonation of Organic Pollutants. Catalysis Letters, 2009, 132, 1-9.	1.4	28
116	Influence of the textural properties of an activated carbon catalyst on the oxidative dehydrogenation of ethylbenzene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 165-171.	2.3	27
117	Lanthanum-based perovskites as catalysts for the ozonation of selected organic compounds. Applied Catalysis B: Environmental, 2013, 140-141, 426-432.	10.8	27
118	A one-pot method for the enhanced production of xylitol directly from hemicellulose (corncob) Tj ETQq0 0 0 rgB1	「/Qverlocl	₹ 10 Tf 50 38 27
119	Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chemical Engineering Journal, 2016, 291, 199-205.	6.6	27
120	Oscillations in the catalytic oxidation of volatile organic compounds. Journal of Catalysis, 2004, 225, 147-154.	3.1	25
121	Promotional effect of Cu on the structure and chloronitrobenzene hydrogenation performance of carbon nanotube and activated carbon supported Pt catalysts. Applied Catalysis A: General, 2013, 464-465, 28-34.	2.2	24
122	Ozonation of Textile Effluents and Dye Solutions in the Presence of Activated Carbon under Continuous Operation. Separation Science and Technology, 2007, 42, 1477-1492.	1.3	23
123	Catalytic ozonation of oxalic acid using carbon nanofibres on macrostructured supports. Water Science and Technology, 2012, 65, 1854-1862.	1.2	23
124	Process design for wastewater treatment: catalytic ozonation of organic pollutants. Water Science and Technology, 2013, 68, 1377-1383.	1.2	23
125	Formation of two metal phases in the preparation of activated carbon-supported nickel catalysts. Applied Catalysis A: General, 2001, 209, 145-154.	2.2	22
126	Stability of a cryptomelane catalyst in the oxidation of toluene. Catalysis Today, 2010, 154, 308-311.	2.2	22

#	Article	IF	Citations
127	Effect of support and pre-treatment conditions on Ptâ€"Sn catalysts: Application to nitrate reduction in water. Journal of Colloid and Interface Science, 2012, 369, 294-301.	5.0	22
128	Highly selective hydrogenation of CC double bond in unsaturated carbonyl compounds over NiC catalyst. Chemical Engineering Journal, 2012, 188, 155-159.	6.6	21
129	Catalytic and Photocatalytic Nitrate Reduction Over Pd-Cu Loaded Over Hybrid Materials of Multi-Walled Carbon Nanotubes and TiO2. Frontiers in Chemistry, 2018, 6, 632.	1.8	21
130	Kinetic Modeling of Nitrate Reduction Catalyzed by Pd–Cu Supported on Carbon Nanotubes. Industrial & Lamp; Engineering Chemistry Research, 2012, 51, 4854-4860.	1.8	20
131	High efficiency of the cylindrical mesopores of MWCNTs for the catalytic wet peroxide oxidation of C.I. Reactive Red 241 dissolved in water. Applied Catalysis B: Environmental, 2012, 121-122, 182-189.	10.8	20
132	Simultaneous catalytic conversion of cellulose and corncob xylan under temperature programming for enhanced sorbitol and xylitol production. Bioresource Technology, 2017, 244, 1173-1177.	4.8	20
133	Catalytic bromate reduction in water: Influence of carbon support. Journal of Environmental Chemical Engineering, 2019, 7, 103015.	3.3	20
134	Mineralization of Substituted Aromatic Compounds by Ozonation Catalyzed by Cerium Oxide and a Cerium Oxide-activated Carbon Composite. Catalysis Letters, 2009, 127, 195-203.	1.4	19
135	Influence of the Surface Chemistry of Multiwalled Carbon Nanotubes on the Selective Conversion of Cellulose into Sorbitol. ChemCatChem, 2017, 9, 888-896.	1.8	19
136	Direct catalytic conversion of agro-forestry biomass wastes into ethylene glycol over CNT supported Ru and W catalysts. Industrial Crops and Products, 2021, 166, 113461.	2.5	19
137	Electrocatalytic oxidation of oxalic and oxamic acids in aqueous media at carbon nanotube modified electrodes. Electrochimica Acta, 2012, 60, 278-286.	2.6	17
138	CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials. Journal of Colloid and Interface Science, 2016, 480, 17-29.	5.0	15
139	Oscillations in the oxidation of MIBK over a Pt/HFAU catalyst: role of coke combustion. Catalysis Communications, 2003, 4, 651-656.	1.6	14
140	Screening of catalysts and reaction conditions for the direct conversion of corncob xylan to xylitol. Green Processing and Synthesis, 2017, 6, .	1.3	13
141	Mechanothermal Approach for N-, S-, P-, and B-Doping of Carbon Nanotubes: Methodology and Catalytic Performance in Wet Air Oxidation. Journal of Carbon Research, 2019, 5, 30.	1.4	13
142	The electrochemical mineralization of oxalic and oxamic acids using modified electrodes based on carbon nanotubes. Chemical Engineering Journal, 2013, 228, 374-380.	6.6	12
143	Oxidation of mixtures of ethyl acetate and butyl acetate over cryptomelane and the effect of water vapor. Environmental Progress and Sustainable Energy, 2016, 35, 1324-1329.	1.3	12
144	Oxidation of Volatile Organic Compounds by Highly Efficient Metal Zeolite Catalysts. ChemCatChem, 2018, 10, 3754-3760.	1.8	11

#	Article	IF	CITATIONS
145	Ozonation of bezafibrate over ceria and ceria supported on carbon materials. Environmental Technology (United Kingdom), 2015, 36, 776-785.	1.2	10
146	Carbonized polyacrylonitrile fibers for the catalytic ozonation of oxalic acid. Catalysis Today, 2015, 249, 59-62.	2.2	9
147	Ethyl and butyl acetate oxidation over manganese oxides. Chinese Journal of Catalysis, 2018, 39, 27-36.	6.9	9
148	An overview of the hydrolytic hydrogenation of lignocellulosic biomass using carbon-supported metal catalysts. Materials Today Sustainability, 2021, 11-12, 100058.	1.9	8
149	Carbon deposits on metal catalysts - mechanisms of formation and gasification. Catalysis Today, 1989, 5, 385-393.	2.2	7
150	Heteroatom (N, S) Co-Doped CNTs in the Phenol Oxidation by Catalytic Wet Air Oxidation. Catalysts, 2021, 11, 578.	1.6	7
151	Comparative study of different catalysts for the direct conversion of cellulose to sorbitol. Green Processing and Synthesis, 2015, 4, .	1.3	6
152	Highly N2-Selective Activated Carbon-Supported Pt-In Catalysts for the Reduction of Nitrites in Water. Frontiers in Chemistry, 2021, 9, 733881.	1.8	6
153	Simulation of dynamical thermogravimetric curves: single and complex reactions. Thermochimica Acta, 1993, 217, 151-173.	1.2	5
154	Spontaneous gold decoration of activated carbons. Inorganica Chimica Acta, 2013, 408, 235-239.	1.2	4
155	On the evaluation of the accuracy of activation energies calculated by integral methods: rebuttal of a putative correction. Journal of Thermal Analysis and Calorimetry, 2010, 100, 593-597.	2.0	1
156	Preparation Of Active Carbon Supported Oxidation Catalysts. Studies in Surface Science and Catalysis, 1983, , 571-577.	1.5	0