Mao-Sheng Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/866392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon, 2010, 48, 788-796.	5.4	1,582
2	Reduced Graphene Oxides: Lightâ€Weight and Highâ€Efficiency Electromagnetic Interference Shielding at Elevated Temperatures. Advanced Materials, 2014, 26, 3484-3489.	11.1	1,375
3	Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon, 2013, 65, 124-139.	5.4	1,009
4	Ferroferric Oxide/Multiwalled Carbon Nanotube vs Polyaniline/Ferroferric Oxide/Multiwalled Carbon Nanotube Multiheterostructures for Highly Effective Microwave Absorption. ACS Applied Materials & Interfaces, 2012, 4, 6949-6956.	4.0	823
5	Thermally Driven Transport and Relaxation Switching Selfâ€Powered Electromagnetic Energy Conversion. Small, 2018, 14, e1800987.	5.2	733
6	2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chemical Engineering Journal, 2019, 359, 1265-1302.	6.6	715
7	Enhanced Microwave Absorption Property of Reduced Graphene Oxide (RCO)-MnFe ₂ O ₄ Nanocomposites and Polyvinylidene Fluoride. ACS Applied Materials & Interfaces, 2014, 6, 7471-7478.	4.0	694
8	Electromagnetic Response and Energy Conversion for Functions and Devices in Lowâ€Đimensional Materials. Advanced Functional Materials, 2019, 29, 1807398.	7.8	592
9	Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2015, 3, 6589-6599.	2.7	551
10	Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. Journal of Materials Chemistry C, 2018, 6, 4586-4602.	2.7	512
11	Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon, 2014, 66, 67-76.	5.4	473
12	Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. Journal of Materials Chemistry, 2012, 22, 21679.	6.7	455
13	Temperature dependent microwave absorption of ultrathin graphene composites. Journal of Materials Chemistry C, 2015, 3, 10017-10022.	2.7	432
14	Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Research, 2018, 11, 1426-1436.	5.8	430
15	Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. Journal of Materials Chemistry A, 2014, 2, 10540.	5.2	420
16	A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures. Chemical Engineering Journal, 2018, 339, 487-498.	6.6	415
17	Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chemical Engineering Journal, 2018, 332, 321-330.	6.6	411
18	Porous Fe ₃ O ₄ /Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties. Journal of Physical Chemistry C, 2011, 115, 13603-13608.	1.5	368

#	Article	IF	CITATIONS
19	NiO Hierarchical Nanorings on SiC: Enhancing Relaxation to Tune Microwave Absorption at Elevated Temperature. ACS Applied Materials & Interfaces, 2015, 7, 7073-7077.	4.0	359
20	Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. Journal of Materials Chemistry C, 2016, 4, 7130-7140.	2.7	351
21	Two-dimensional nanosheets of MoS ₂ : a promising material with high dielectric properties and microwave absorption performance. Nanoscale, 2015, 7, 15734-15740.	2.8	335
22	High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Applied Physics Letters, 2009, 94, .	1.5	333
23	Multiscale Assembly of Grape-Like Ferroferric Oxide and Carbon Nanotubes: A Smart Absorber Prototype Varying Temperature to Tune Intensities. ACS Applied Materials & Interfaces, 2015, 7, 19408-19415.	4.0	330
24	Quaternary Nanocomposites Consisting of Graphene, Fe ₃ O ₄ @Fe Core@Shell, and ZnO Nanoparticles: Synthesis and Excellent Electromagnetic Absorption Properties. ACS Applied Materials & Interfaces, 2012, 4, 6436-6442.	4.0	329
25	Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Applied Physics Letters, 2009, 95, .	1.5	325
26	Electromagnetic Property and Tunable Microwave Absorption of 3D Nets from Nickel Chains at Elevated Temperature. ACS Applied Materials & Interfaces, 2016, 8, 22615-22622.	4.0	307
27	Enhanced Dielectric Properties and Excellent Microwave Absorption of SiC Powders Driven with NiO Nanorings. Advanced Optical Materials, 2014, 2, 214-219.	3.6	290
28	Variableâ€Temperature Electron Transport and Dipole Polarization Turning Flexible Multifunctional Microsensor beyond Electrical and Optical Energy. Advanced Materials, 2020, 32, e1907156.	11.1	288
29	3D Fe ₃ O ₄ nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity. Journal of Materials Chemistry A, 2015, 3, 12621-12625.	5.2	284
30	Porous Fe ₃ O ₄ /SnO ₂ Core/Shell Nanorods: Synthesis and Electromagnetic Properties. Journal of Physical Chemistry C, 2009, 113, 10061-10064.	1.5	281
31	Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2245-2251.	0.9	276
32	Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon, 2014, 77, 130-142.	5.4	271
33	Diverse Metal–Organic Framework Architectures for Electromagnetic Absorbers and Shielding. Advanced Functional Materials, 2021, 31, 2100470.	7.8	271
34	Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon, 2018, 127, 209-217.	5.4	268
35	Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride). Journal of Materials Chemistry A, 2013, 1, 4685.	5.2	264
36	Assembling Nano–Microarchitecture for Electromagnetic Absorbers and Smart Devices. Advanced Materials, 2020, 32, e2002112.	11,1	259

#	Article	IF	CITATIONS
37	Synthesis, Multi-Nonlinear Dielectric Resonance, and Excellent Electromagnetic Absorption Characteristics of Fe ₃ O ₄ /ZnO Core/Shell Nanorods. Journal of Physical Chemistry C, 2010, 114, 9239-9244.	1.5	254
38	Controllable fabrication of mono-dispersed RGO–hematite nanocomposites and their enhanced wave absorption properties. Journal of Materials Chemistry A, 2013, 1, 5996.	5.2	251
39	Microwave absorption properties and mechanism of cagelike ZnOâ^•SiO2 nanocomposites. Applied Physics Letters, 2007, 91, .	1.5	249
40	Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene–CuS nanocomposites and polyvinylidene fluoride. Journal of Materials Chemistry A, 2013, 1, 12115.	5.2	226
41	Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. Journal of Materials Chemistry C, 2015, 3, 4670-4677.	2.7	224
42	Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon, 2015, 93, 151-160.	5.4	213
43	Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. Journal of Materials Chemistry A, 2015, 3, 2097-2107.	5.2	208
44	Eco-mimetic nanoarchitecture for green EMI shielding. Chemical Engineering Journal, 2019, 369, 1068-1077.	6.6	205
45	High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scripta Materialia, 2009, 61, 201-204.	2.6	204
46	Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding. Carbon, 2020, 157, 80-89.	5.4	204
47	Graphene–Fe3O4 nanohybrids: Synthesis and excellent electromagnetic absorption properties. Journal of Applied Physics, 2013, 113, .	1.1	203
48	A Nano-Micro Engineering Nanofiber for Electromagnetic Absorber, Green Shielding and Sensor. Nano-Micro Letters, 2021, 13, 27.	14.4	200
49	Interfacial Engineering of Carbon Nanofiber–Graphene–Carbon Nanofiber Heterojunctions in Flexible Lightweight Electromagnetic Shielding Networks. ACS Applied Materials & Interfaces, 2014, 6, 10516-10523.	4.0	198
50	Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites. Carbon, 2016, 100, 109-117.	5.4	195
51	Molecular Patching Engineering to Drive Energy Conversion as Efficient and Environmentâ€Friendly Cell toward Wireless Power Transmission. Advanced Functional Materials, 2020, 30, 1908299.	7.8	194
52	Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon, 2020, 162, 157-171.	5.4	189
53	Atomic Layer Tailoring Titanium Carbide MXene To Tune Transport and Polarization for Utilization of Electromagnetic Energy beyond Solar and Chemical Energy. ACS Applied Materials & Interfaces, 2019, 11, 12535-12543.	4.0	187
54	Electrospinning and in-situ hierarchical thermal treatment to tailor C–NiCo2O4 nanofibers for tunable microwave absorption. Carbon, 2021, 171, 953-962.	5.4	185

#	Article	IF	CITATIONS
55	Lightweight and High-Performance Microwave Absorber Based on 2D WS2–RGO Heterostructures. Nano-Micro Letters, 2019, 11, 38.	14.4	176
56	Electronic Structure and Electromagnetic Properties for 2D Electromagnetic Functional Materials in Gigahertz Frequency. Annalen Der Physik, 2019, 531, 1800390.	0.9	173
57	Electromagnetic absorber converting radiation for multifunction. Materials Science and Engineering Reports, 2021, 145, 100627.	14.8	169
58	Tailoring Ti ₃ C ₂ T _x nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale, 2019, 11, 6080-6088.	2.8	168
59	Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Materials & Design, 2003, 24, 391-396.	5.1	163
60	Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. Journal of Materials Chemistry C, 2014, 2, 5057-5064.	2.7	159
61	A green fabrication and variable temperature electromagnetic properties for thermal stable microwave absorption towards flower-like Co3O4@rGO/SiO2 composites. Composites Part B: Engineering, 2019, 166, 187-195.	5.9	158
62	Genetic Dielectric Genes Inside 2D Carbonâ€Based Materials with Tunable Electromagnetic Function at Elevated Temperature. Small Structures, 2021, 2, 2100104.	6.9	157
63	Heterogeneous p–n Junction CdS/Cu ₂ O Nanorod Arrays: Synthesis and Superior Visible-Light-Driven Photoelectrochemical Performance for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 11652-11662.	4.0	154
64	Unusual continuous dual absorption peaks in Ca-doped BiFeO ₃ nanostructures for broadened microwave absorption. Nanoscale, 2016, 8, 10415-10424.	2.8	147
65	Initiating VBâ€Group Laminated NbS ₂ Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48ÂGHz through Phase Engineering Modulation. Advanced Functional Materials, 2022, 32, 2108194.	7.8	147
66	Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties. Journal of Materials Chemistry A, 2014, 2, 8644-8651.	5.2	141
67	Synergetic dielectric loss and magnetic loss towards superior microwave absorption through hybridization of few-layer WS2 nanosheets with NiO nanoparticles. Science Bulletin, 2020, 65, 138-146.	4.3	139
68	Thermally-tailoring dielectric "genes―in graphene-based heterostructure to manipulate electromagnetic response. Carbon, 2021, 184, 136-145.	5.4	139
69	Nonlinear resonant and high dielectric loss behavior of CdSâ^·Î±-Fe2O3 heterostructure nanocomposites. Applied Physics Letters, 2008, 93, 183118.	1.5	137
70	Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon, 2021, 174, 638-646.	5.4	134
71	Silicon carbide powders: Temperature-dependent dielectric properties and enhanced microwave absorption at gigahertz range. Solid State Communications, 2013, 163, 1-6.	0.9	133
72	High-performance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. Journal of Materials Science and Technology, 2022, 107, 155-164.	5.6	133

#	Article	IF	CITATIONS
73	Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy. Journal of Materials Chemistry C, 2015, 3, 9276-9282.	2.7	129
74	Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe ₃ O ₄ cores and hierarchical CuSiO ₃ shells. Nanoscale, 2014, 6, 5782-5790.	2.8	126
75	Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Composites Science and Technology, 2004, 64, 2089-2096.	3.8	124
76	Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: Dielectric properties, electromagnetic interference shielding and microwave absorption. Materials Research Bulletin, 2012, 47, 1747-1754.	2.7	122
77	Fabrication of multi-functional PVDF/RGO composites via a simple thermal reduction process and their enhanced electromagnetic wave absorption and dielectric properties. RSC Advances, 2014, 4, 19594-19601.	1.7	122
78	Carbon nanotube-CdS core–shell nanowires with tunable and high-efficiency microwave absorption at elevated temperature. Nanotechnology, 2016, 27, 065702.	1.3	120
79	Synthesis and enhanced ethanol sensing characteristics of α-Fe ₂ O ₃ <i>/</i> SnO ₂ core–shell nanorods. Nanotechnology, 2009, 20, 045502.	1.3	119
80	Self-Assembly Construction of WS ₂ –rGO Architecture with Green EMI Shielding. ACS Applied Materials & Interfaces, 2019, 11, 26807-26816.	4.0	117
81	Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance. Applied Surface Science, 2020, 528, 147052.	3.1	116
82	One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption. Applied Surface Science, 2018, 447, 244-253.	3.1	115
83	Developing MXenes from Wireless Communication to Electromagnetic Attenuation. Nano-Micro Letters, 2021, 13, 115.	14.4	115
84	Green Approach to Conductive PEDOT:PSS Decorating Magnetic-Graphene to Recover Conductivity for Highly Efficient Absorption. ACS Sustainable Chemistry and Engineering, 2018, 6, 14017-14025.	3.2	113
85	Wire-in-tube ZnO@carbon by molecular layer deposition: Accurately tunable electromagnetic parameters and remarkable microwave absorption. Chemical Engineering Journal, 2020, 382, 122860.	6.6	113
86	Sol–gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceramics International, 2015, 41, 8768-8772.	2.3	112
87	Implantation of WSe2 nanosheets into multi-walled carbon nanotubes for enhanced microwave absorption. Journal of Colloid and Interface Science, 2022, 609, 746-754.	5.0	110
88	Phase diagram and properties of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 polycrystalline ceramics. Journal of the European Ceramic Society, 2012, 32, 433-439.	2.8	109
89	The enhanced polarization relaxation and excellent high-temperature dielectric properties of N-doped SiC. Applied Physics Letters, 2014, 104, .	1.5	109
90	Polymer composites with enhanced wave absorption properties based on modified graphite and polyvinylidene fluoride. Journal of Materials Chemistry A, 2013, 1, 7031.	5.2	105

#	Article	IF	CITATIONS
91	Electromagnetic Functions of Patterned 2D Materials for Micro–Nano Devices Covering GHz, THz, and Optical Frequency. Advanced Optical Materials, 2019, 7, 1900689.	3.6	105
92	Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides. Nanotechnology, 2019, 30, 445708.	1.3	104
93	Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries. Nano Research, 2018, 11, 1437-1446.	5.8	102
94	A wearable microwave absorption cloth. Journal of Materials Chemistry C, 2017, 5, 2432-2441.	2.7	100
95	Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Research, 2022, 15, 6751-6760.	5.8	100
96	Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites. Journal of Materials Chemistry C, 2013, 1, 1846.	2.7	98
97	Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu 2-x Se core–shell nanowire arrays fabricated by ion-replacement method. Applied Catalysis B: Environmental, 2017, 209, 110-117.	10.8	98
98	Ultrathin Topological Insulator Absorber: Unique Dielectric Behavior of Bi ₂ Te ₃ Nanosheets Based on Conducting Surface States. ACS Applied Materials & Interfaces, 2019, 11, 33285-33291.	4.0	94
99	The synthesis and selective gas sensing characteristics of SnO ₂ <i>/</i> α-Fe ₂ O ₃ hierarchical nanostructures. Nanotechnology, 2008, 19, 205603.	1.3	91
100	Highly Efficient Microwave Absorption of Magnetic Nanospindle–Conductive Polymer Hybrids by Molecular Layer Deposition. ACS Applied Materials & Interfaces, 2017, 9, 11116-11125.	4.0	91
101	Multifunctional BiFeO3 composites: Absorption attenuation dominated effective electromagnetic interference shielding and electromagnetic absorption induced by multiple dielectric and magnetic relaxations. Composites Science and Technology, 2018, 159, 240-250.	3.8	90
102	Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with Hetero-structures. Applied Surface Science, 2018, 462, 872-882.	3.1	90
103	Effects of hydroxyl groups and hydrogen passivation on the structure, electrical and optical properties of silicon carbide nanowires. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126106.	0.9	88
104	Computation design and performance prediction towards a multi-layer microwave absorber. Materials & Design, 2002, 23, 557-564.	5.1	87
105	Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology, 2013, 24, 115708.	1.3	87
106	Customizing coaxial stacking VS ₂ nanosheets for dual-band microwave absorption with superior performance in the C- and K _u -bands. Journal of Materials Chemistry C, 2020, 8, 5923-5933.	2.7	86
107	Green building materials lit up by electromagnetic absorption function: A review. Journal of Materials Science and Technology, 2022, 112, 329-344.	5.6	86
108	Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. Journal of Materials Science and Technology, 2022, 127, 48-60.	5.6	86

#	Article	IF	CITATIONS
109	Nickel layer deposition on SiC nanoparticles by simple electroless plating and its dielectric behaviors. Powder Technology, 2006, 168, 84-88.	2.1	85
110	Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. Journal of Alloys and Compounds, 2020, 829, 154531.	2.8	85
111	Microwave absorption properties of multiferroic BiFeO3 nanoparticles. Materials Letters, 2009, 63, 1344-1346.	1.3	84
112	Multiple electrical response and enhanced energy storage induced by unusual coexistent-phase structure in relaxor ferroelectric ceramics. Acta Materialia, 2018, 146, 202-210.	3.8	83
113	Enhanced ferromagnetism and microwave absorption properties of BiFeO3 nanocrystals with Ho substitution. Materials Letters, 2012, 84, 110-113.	1.3	82
114	Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Research, 2017, 10, 1595-1607.	5.8	82
115	Microwave synthesis of Al-doped SiC powders and study of their dielectric properties. Materials Research Bulletin, 2010, 45, 247-250.	2.7	80
116	Preparation and microwave absorption properties of basalt fiber/nickel core–shell heterostructures. Journal of Alloys and Compounds, 2010, 495, 254-259.	2.8	80
117	Metal-organic frameworks based photocatalysts: Architecture strategies for efficient solar energy conversion. Chemical Engineering Journal, 2021, 419, 129459.	6.6	78
118	Polymer/carbon nanocomposites for enhanced thermal transport properties – carbon nanotubes versus graphene sheets as nanoscale fillers. Journal of Materials Chemistry, 2012, 22, 17133.	6.7	77
119	Controllable Fabrication of CuS Hierarchical Nanostructures and Their Optical, Photocatalytic, and Wave Absorption Properties. ChemPlusChem, 2013, 78, 250-258.	1.3	77
120	High-performance microwave absorption materials based on MoS 2 -graphene isomorphic hetero-structures. Journal of Alloys and Compounds, 2018, 758, 62-71.	2.8	77
121	Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes. Journal of Alloys and Compounds, 2019, 811, 152011.	2.8	77
122	Vertically implanting MoSe2 nanosheets on the RGO sheets towards excellent multi-band microwave absorption. Carbon, 2022, 197, 324-333.	5.4	77
123	Fabrication of Reduced Graphene Oxide (RGO)/Co ₃ O ₄ Nanohybrid Particles and a RGO/Co ₃ O ₄ /Poly(vinylidene fluoride) Composite with Enhanced Waveâ€Absorption Properties. ChemPlusChem, 2014, 79, 375-381.	1.3	76
124	High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency. RSC Advances, 2015, 5, 77184-77191.	1.7	76
125	Ni-decorated SiC powders: Enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technology, 2013, 237, 309-313.	2.1	75
126	Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band. Applied Surface Science, 2022, 577, 151939.	3.1	75

#	Article	IF	CITATIONS
127	Thermal frequency shift and tunable microwave absorption in BiFeO3 family. Scientific Reports, 2016, 6, 24837.	1.6	74
128	Adsorption of Na on intrinsic, B-doped, N-doped and vacancy graphenes: A first-principles study. Computational Materials Science, 2014, 85, 179-185.	1.4	73
129	Electroless nickel plating on silicon carbide nanoparticles. Surface and Coatings Technology, 2003, 172, 90-94.	2.2	72
130	Investigation of Ternary System <scp><scp>PbHfO</scp></scp> ₃ – <scp><scp>PbTiO</scp></scp> ₃ – <scp><scp> with Morphotropic Phase Boundary Compositions. Journal of the American Ceramic Society, 2012, 95, 3220-3228.</scp></scp>	Pb	(<scp></scp>
131	Recent progress in two-dimensional materials for microwave absorption applications. Chemical Engineering Journal, 2021, 425, 131558.	6.6	71
132	High capacity and excellent cycling stability of single-walled carbon nanotube/SnO2 core-shell structures as Li-insertion materials. Applied Physics Letters, 2008, 92, .	1.5	69
133	Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale, 2022, 14, 7322-7331.	2.8	69
134	Low-temperature densification of TiB2 ceramic by the spark plasma sintering process with Ti as a sintering aid. Scripta Materialia, 2012, 66, 167-170.	2.6	68
135	High-temperature dielectric properties and enhanced temperature-response attenuation of β-MnO2 nanorods. Applied Physics Letters, 2008, 93, 223112.	1.5	65
136	Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites. Ceramics International, 2013, 39, 5979-5983.	2.3	63
137	Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets. Applied Surface Science, 2021, 548, 149158.	3.1	63
138	MXene-CNT/PANI ternary material with excellent supercapacitive performance driven by synergy. Journal of Alloys and Compounds, 2021, 868, 159159.	2.8	62
139	Effect of surface dangling bonds on transport properties of phosphorous doped SiC nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 247-253.	1.3	61
140	Oxidizing annealing effects on VO2 films with different microstructures. Applied Surface Science, 2015, 345, 232-237.	3.1	59
141	Microwave permittivity and permeability experiments in high-loss dielectrics: Caution with implicit Fabry-Pérot resonance for negative imaginary permeability. Applied Physics Letters, 2013, 103, .	1.5	58
142	Self-Assembling VO ₂ Nanonet with High Switching Performance at Wafer-Scale. Chemistry of Materials, 2015, 27, 7419-7424.	3.2	58
143	Effect of ZnO whisker content on sinterability and fracture behaviour of PZT peizoelectric composites. Journal of Alloys and Compounds, 2010, 504, 123-128.	2.8	56
144	Tuning broadband microwave absorption via highly conductive Fe3O4/graphene heterostructural nanofillers. Materials Research Bulletin, 2015, 72, 316-323.	2.7	55

#	Article	IF	CITATIONS
145	Mechanical reinforcement and piezoelectric properties of nanocomposites embedded with ZnO nanowhiskers. Scripta Materialia, 2008, 59, 780-783.	2.6	54
146	Production of Ni-Doped SiC Nanopowders and their Dielectric Properties. Journal of the American Ceramic Society, 2011, 94, 1523-1527.	1.9	54
147	Microwave responses and general model of nanotetraneedle ZnO: Integration of interface scattering, microcurrent, dielectric relaxation, and microantenna. Journal of Applied Physics, 2010, 107, 054304.	1.1	53
148	Morphology-controlled synthesis and growth mechanism of lead-free bismuth sodium titanate nanostructures via the hydrothermal route. CrystEngComm, 2013, 15, 3984.	1.3	52
149	Evolution of Structural and Electrical Properties of Oxygen-Deficient VO ₂ under Low Temperature Heating Process. ACS Applied Materials & Interfaces, 2017, 9, 27135-27141.	4.0	52
150	Transport and recombination properties of group-III doped SiCNTs. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114578.	1.3	52
151	High-temperature conductance loss dominated defect level in h-BN: Experiments and first principles calculations. Journal of Applied Physics, 2009, 105, .	1.1	50
152	Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. Journal of Materiomics, 2022, 8, 327-334.	2.8	50
153	Photoresponse of SnO2nanobelts grownin situon interdigital electrodes. Nanotechnology, 2007, 18, 285502.	1.3	49
154	Synthesis and growth mechanism of 3D α-MnO2 clusters and their application in polymer composites with enhanced microwave absorption properties. RSC Advances, 2013, 3, 18009.	1.7	49
155	High dielectric loss and microwave absorption behavior of multiferroic BiFeO 3 ceramic. Ceramics International, 2013, 39, 7241-7246.	2.3	49
156	Flexible Semitransparent Energy Harvester with High Pressure Sensitivity and Power Density Based on Laterally Aligned PZT Single-Crystal Nanowires. ACS Applied Materials & Interfaces, 2017, 9, 24696-24703.	4.0	48
157	Structure, ferromagnetism and microwave absorption properties of La substituted BiFeO3 nanoparticles. Materials Letters, 2013, 111, 130-133.	1.3	47
158	Structural stability, electronic and optical properties of Ni-doped 3C–SiC by first principles calculation. Journal of Alloys and Compounds, 2011, 509, 6117-6122.	2.8	46
159	Enhanced microwave absorption performance of polyaniline-coated CNT hybrids by plasma-induced graft polymerization. Applied Physics A: Materials Science and Processing, 2015, 119, 379-386.	1.1	46
160	Enhanced microwave absorption properties of Co-doped SiC at elevated temperature. Applied Surface Science, 2018, 445, 383-390.	3.1	46
161	A nanoscale core-shell of β-SiCP–Ni prepared by electroless plating at lower temperature. Surface and Coatings Technology, 2006, 201, 108-112.	2.2	45
162	Magnetic-field-induced dielectric behaviors and magneto-electrical coupling of multiferroic compounds containing cobalt ferrite/barium calcium titanate composite fibers. Journal of Alloys and Compounds, 2018, 740, 1067-1076.	2.8	45

>

#	Article	IF	CITATIONS
163	Cobalt doping of bismuth ferrite for matched dielectric and magnetic loss. Applied Physics Letters, 2019, 115, .	1.5	45
164	Enhanced Piezoelectric and Ferroelectric Properties of Nb ₂ O ₅ Modified Lead Zirconate Titanateâ€Based Composites. Journal of the American Ceramic Society, 2011, 94, 647-650.	1.9	43
165	Enhanced magnetization and improved leakage in Erâ€doped BiFeO ₃ nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 809-813.	0.8	43
166	Piezoelectric properties of PbHfO ₃ –PbTiO ₃ –Pb(Mg _{1/3} Nb _{2/3})O ₃ ternary ceramics. Physica Status Solidi - Rapid Research Letters, 2012, 6, 135-137.	1.2	42
167	Electromagnetic and microwave absorbing properties of magnetite nanoparticles decorated carbon nanotubes/polyaniline multiphase heterostructures. Journal of Materials Science, 2014, 49, 7221-7230.	1.7	41
168	Piezoelectric Ceramics in the <scp><scp>PbSnO₃–Pb(Mg_{1/3}Nb_{2/3})O₃–PbTiO<sub Ternary System. Journal of the American Ceramic Society, 2011, 94, 3690-3693.</sub </scp></scp>	>3< ‡s 9ub><	/sc p 9
169	Study on synthesis and evolution of sodium potassium niobate ceramic powders by an oxalic acid-based sol–gel method. Journal of Sol-Gel Science and Technology, 2011, 57, 31-35.	1.1	39
170	Low dielectric loss and non-Debye relaxation of gamma-Y2Si2O7 ceramic at elevated temperature in X-band. Journal of Applied Physics, 2009, 105, .	1.1	38
171	Investigation of ternary system Pb(Sn,Ti)O3–Pb(Mg1/3Nb2/3)O3 with morphotropic phase boundary compositions. Journal of the European Ceramic Society, 2012, 32, 441-448.	2.8	38
172	Effects of <scp><scp>Nb</scp></scp> , <scp>Mn</scp> doping on the Structure, Piezoelectric, and Dielectric Properties of 0.8 <scp><scp>Pb</scp></scp> (<scp>Sn</scp> _{0.46} <scp><scp>Ti</scp></scp> Piezoelectric Ceramics. Journal of the American Ceramic Society, 2013, 96, 3440-3447.	>0.5 ¹ 4 ⁹ /sut)>) <scp><scp< td=""></scp<></scp>
173	NiFe Layered Double Hydroxide on Nitrogen Doped TiO ₂ Nanotube Arrays toward Efficient Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 5960-5967.	2.5	37
174	Highly effective shielding of electromagnetic waves in MoS2 nanosheets synthesized by a hydrothermal method. Journal of Physics and Chemistry of Solids, 2019, 134, 77-82.	1.9	33
175	Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance. Scientific Reports, 2016, 6, 27898.	1.6	32
176	Rational design of NiFe ₂ O ₄ –rGO by tuning the compositional chemistry and its enhanced performance for a Li-ion battery anode. Inorganic Chemistry Frontiers, 2019, 6, 961-968.	3.0	32
177	MXene films: Toward high-performance electromagnetic interference shielding and supercapacitor electrode. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106935.	3.8	32
178	Catalyst-free synthesis, growth mechanism and optical properties of multipod ZnO with nanonail-like legs. Scripta Materialia, 2006, 54, 2057-2061.	2.6	31
179	Enhanced piezoelectric and mechanical properties of ZnO whiskers and Sb2O3 co-modified lead zirconate titanate composites. Materials Letters, 2010, 64, 1798-1801.	1.3	31
180	Enhanced electromagnetic properties and microwave attenuation of BiFeO3-BaFe7(MnTi)2.5O19 driven by multi-relaxation and strong ferromagnetic resonance. Materials and Design, 2016, 110, 99-104.	3.3	31

#	Article	IF	CITATIONS
181	Influence of mechanical activation on combustion synthesis of fine silicon carbide (SiC) powder. Powder Technology, 2009, 196, 229-232.	2.1	30
182	Fabrication, microstructure and microwave absorption of multi-walled carbon nanotube decorated with CdS nanocrystal. Materials Letters, 2014, 125, 107-110.	1.3	30
183	Tailorable MOF architectures for high-efficiency electromagnetic functions. Materials Chemistry Frontiers, 2021, 5, 6444-6460.	3.2	30
184	Combustion Oxidization Synthesis of Unique Cage-Like Nanotetrapod ZnO and Its Optical Property. Journal of Nanoscience and Nanotechnology, 2006, 6, 2525-2528.	0.9	29
185	Enhanced Waveâ€Absorption Properties of Nanocomposites Based on the Synthesized Bi ₂ S ₃ Nanorods and Polyvinylidene Fluoride. ChemPlusChem, 2014, 79, 1089-1095.	1.3	29
186	Domain Structure and Enhanced Electrical Properties in Sodium Bismuth Titanate Ceramics Sintered from Crystals with Different Morphologies. Journal of the American Ceramic Society, 2016, 99, 2316-2326.	1.9	29
187	Tailoring adsorption for tunable lithium ion storage and devices. Chemical Engineering Journal, 2021, 413, 127428.	6.6	29
188	Preparing γ′-Fe4N ultrafine powder by twice-nitriding method. Powder Technology, 2001, 115, 96-98.	2.1	28
189	Fiber-optic composite cure sensor: monitoring the curing process of composite material based on intensity modulation. Composites Science and Technology, 2003, 63, 1749-1758.	3.8	28
190	Thickness effect on electrical properties of Pb(Zr0.52Ti0.48)O3 thick films embedded with ZnO nanowhiskers prepared by a hybrid sol–gel route. Materials Letters, 2010, 64, 632-635.	1.3	28
191	Beta-manganese dioxide nanorods for sufficient high-temperature electromagnetic interference shielding in X-band. Applied Physics A: Materials Science and Processing, 2014, 116, 1779-1783.	1.1	28
192	Self-template processed hierarchical V2O5 nanobelts as cathode for high performance lithium ion battery. Electrochimica Acta, 2015, 182, 621-628.	2.6	28
193	Confinedly growing and tailoring of Co ₃ O ₄ clusters-WS ₂ nanosheets for highly efficient microwave absorption. Nanotechnology, 2020, 31, 325703.	1.3	28
194	The enhanced dielectric from basalt fibers/nickel core-shell structures synthesized by electroless plating. Surface and Coatings Technology, 2007, 201, 7201-7206.	2.2	27
195	Micro-current attenuation modeling and numerical simulation for cage-like ZnO/SiO2 nanocomposite. Journal of Applied Physics, 2008, 104, 096101.	1.1	27
196	Doping effect on the adsorption of Na atom onto graphenes. Current Applied Physics, 2016, 16, 574-580.	1.1	27
197	Hollow nanoparticle-assembled hierarchical NiCo ₂ O ₄ nanofibers with enhanced electrochemical performance for lithium-ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 4101-4112.	3.0	27
198	Constructing WSe2@CNTs heterojunction to tune attenuation capability for efficient microwave absorbing and green EMI shielding. Applied Surface Science, 2022, 592, 153253.	3.1	27

#	Article	IF	CITATIONS
199	Preparation and electrical properties of Pb(Zr0.52Ti0.48)O3 thick films embedded with ZnO nanowhiskers by a hybrid sol–gel route. Journal of Alloys and Compounds, 2010, 492, 264-268.	2.8	26
200	Effects of thickness on energy storage of (Pb, La)(Zr, Sn, Ti)O 3 antiferroelectric films deposited on LaNiO 3 electrodes. Ceramics International, 2016, 42, 1314-1317.	2.3	26
201	Inhibition of quantum size effects from surface dangling bonds: The first principles study on different morphology SiC nanowires. Physica B: Condensed Matter, 2018, 539, 72-77.	1.3	26
202	Confinedly implanting Fe3O4 nanoclusters on MoS2 nanosheets to tailor electromagnetic properties for excellent multi-bands microwave absorption. Journal of Materiomics, 2022, 8, 577-585.	2.8	26
203	Effects of Nb ₂ O ₅ additive on the piezoelectric and dielectric properties of PHTâ€PMN ternary ceramics near the morphotropic phase boundary. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 226-230.	0.8	25
204	Enhanced microwave absorption properties of NiFe2O4 nanocrystal deposited reduced graphene oxides. Journal of Materials Science: Materials in Electronics, 2016, 27, 11518-11523.	1.1	25
205	Contribution of grains and grain boundaries to dielectric relaxations and conduction of Aurivillius Bi4Ti2Fe0.5Nb0.5O12 ceramics. Ceramics International, 2015, 41, 14652-14659.	2.3	24
206	Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 98, 191-196.	1.3	24
207	Enhanced electromagnetic interference shielding with low reflection induced by heterogeneous double-layer structure in BiFeO3/BaFe7(MnTi)2.5O19 composite. Journal of Alloys and Compounds, 2019, 772, 99-104.	2.8	24
208	Achieving superior GHz-absorption performance in VB-group laminated VS2 microwave absorber with dielectric and magnetic synergy effects. Advanced Composites and Hybrid Materials, 2022, 5, 2317-2327.	9.9	24
209	Distinctly Improved Photocurrent and Stability in TiO2 Nanotube Arrays by Ladder Band Structure. Journal of Physical Chemistry C, 2017, 121, 20605-20612.	1.5	23
210	Light-weight nanocomposite materials with enhanced thermal transport properties. Nanotechnology Reviews, 2012, 1, 363-376.	2.6	22
211	Dielectric and piezoelectric properties of manganeseâ€modified PbHfO ₃ –PbTiO ₃ –Pb(Mg _{1/3} Nb _{2/3})O ₃ ternary ceramics with morphotropic phase boundary compositions. Physica Status Solidi - Rapid Research Letters, 2013, 7, 221-223.	1.2	22
212	Nano-scale and micron-scale manganese dioxide vs corresponding paraffin composites for electromagnetic interference shielding and microwave absorption. Materials Research Bulletin, 2014, 51, 277-286.	2.7	22
213	Scattering mechanisms and anomalous conductivity of heavily N-doped 3C-SiC in ultraviolet region. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2286-2289.	0.9	21
214	Dynamic compressive response and failure behavior of fiber polymer composites embedded with tetra-needle-like ZnO nanowhiskers. Composite Structures, 2010, 92, 2984-2991.	3.1	20
215	Microwave Absorption Properties of Ni-Foped SiC Powders in the 2–18 GHz Frequency Range. Chinese Physics Letters, 2011, 28, 037701.	1.3	20
216	Enhanced Ferromagnetism and Microwave Dielectric Properties of Bi _{0.95} Y _{0.05} FeO ₃ Nanocrystals. Chinese Physics Letters, 2011, 28, 037702.	1.3	20

#	Article	IF	CITATIONS
217	Tetra-needle zinc oxide/silica composites: High-temperature dielectric properties at X-band. Solid State Communications, 2013, 154, 64-68.	0.9	20
218	Effect of MnO2 addition on relaxor behavior and electrical properties of PMNST ferroelectric ceramics. Ceramics International, 2015, 41, 9647-9654.	2.3	20
219	Comparative study on transport properties and scattering mechanism of group III doped SiC nanotube. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2484-2488.	0.9	20
220	Effect of sintering temperature and time on densification, microstructure and properties of the PZT/ZnO nanowhisker piezoelectric composites. Journal of Alloys and Compounds, 2011, 509, 6980-6986.	2.8	19
221	Controllable synthesis and characterization of tungsten disulfide nanosheets as promising nanomaterials for electronic devices. Ceramics International, 2019, 45, 12443-12448.	2.3	19
222	A novel and simple combustion route towards long legs nanotetrapod ZnO. Materials Research Bulletin, 2005, 40, 1745-1750.	2.7	18
223	A general combustion approach to multipod ZnO and its characterization. Journal of Materials Science, 2006, 41, 2243-2248.	1.7	18
224	Developing electromagnetic functional materials for green building. Journal of Building Engineering, 2022, 45, 103496.	1.6	18
225	Strong fluctuation theory for effective electromagnetic parameters of fiber fabric radar absorbing materials. Materials & Design, 2004, 25, 379-384.	5.1	17
226	Low-temperature synthesis of ribbon-like orthorhombic NaNbO ₃ fibers and their photocatalytic activities for H ₂ evolution. RSC Advances, 2015, 5, 33001-33007.	1.7	17
227	Photo actuation of liquid crystalline elastomer nanocomposites incorporated with gold nanoparticles based on surface plasmon resonance. Soft Matter, 2019, 15, 6116-6126.	1.2	17
228	NiFe ₂ O ₄ nanoparticles on reduced graphene oxide for supercapacitor electrodes with improved capacitance. Materials Research Express, 2019, 6, 105535.	0.8	17
229	MXene nanohybrids: Excellent electromagnetic properties for absorbing electromagnetic waves. Ceramics International, 2022, 48, 1484-1493.	2.3	17
230	Preparation and properties of ZnO nano-whiskers. Science in China Series D: Earth Sciences, 2008, 51, 1433-1438.	0.9	16
231	The Comprehensive Retrieval Method of Electromagnetic Parameters Using the Scattering Parameters of Metamaterials for Two Choices of Time-Dependent Factors. Chinese Physics Letters, 2012, 29, 017701.	1.3	16
232	Mn, Ti substituted barium ferrite to tune electromagnetic properties and enhanced microwave absorption. Journal of Materials Science: Materials in Electronics, 2016, 27, 5128-5135.	1.1	16
233	Two collinear anti-plane shear cracks in a piezoelectric layer bonded to dissimilar half spaces. European Journal of Mechanics, A/Solids, 2001, 20, 213-226.	2.1	15
234	The influence of mechanochemical activation on combustion synthesis of Si3N4. Ceramics International, 2008, 34, 1267-1271.	2.3	15

#	Article	IF	CITATIONS
235	Effect of heavily doping with boron on electronic structures and optical properties of β-SiC. Physica B: Condensed Matter, 2010, 405, 2625-2631.	1.3	15
236	First Principle Study of the Electronic Properties of 3C-SiC Doped with Different Amounts of Ni. Chinese Physics Letters, 2012, 29, 077701.	1.3	15
237	Carbon materials with quasi-graphene layers: The dielectric, percolation properties and the electronic transport mechanism. Chinese Physics B, 2013, 22, 037701.	0.7	15
238	Facile synthesis of highly conductive MoS2/graphene nanohybrids with hetero-structures as excellent microwave absorbers. RSC Advances, 2018, 8, 36616-36624.	1.7	15
239	A study of the microwave actuation of a liquid crystalline elastomer. Soft Matter, 2020, 16, 7332-7341.	1.2	15
240	Fabrication, Microstructure and Properties of Zinc Oxide Nanowhisker Reinforced Lead Zirconate Titanate Nanocomposites. Current Nanoscience, 2011, 7, 227-234.	0.7	14
241	Hydrothermal preparation and characterization of sheet-like (K Na1â^)NbO3 perovskites. Ceramics International, 2016, 42, 9073-9078.	2.3	14
242	Effects of Nb2O5 addition on the microstructure, electrical, and mechanical properties of PZT/ZnO nanowhisker piezoelectric composites. Journal of Materials Science, 2012, 47, 2687-2694.	1.7	13
243	Effects of ZnO nanoneedles addition on the mechanical and piezoelectric properties of hard PZT-based composites. Journal of Materials Science: Materials in Electronics, 2013, 24, 1463-1468.	1.1	13
244	Preparation and characterization of orthorhombic NaNbO3 Long Bar. Ceramics International, 2014, 40, 14279-14285.	2.3	13
245	Bifunctional Ti3C2Tx–CNT/PANI composite with excellent electromagnetic shielding and supercapacitive performance. Ceramics International, 2021, 47, 25531-25540.	2.3	13
246	Synthesis and characterization of single-crystalline (K,Na)NbO3 nanorods. Ceramics International, 2013, 39, 5931-5935.	2.3	12
247	Preparation and Ferroelectric Properties of K _{0.5} Na _{0.5} NbO ₃ Thin Films Derived from Non-alcohol Niobium Salt Sol-gel Process. Integrated Ferroelectrics, 2014, 154, 97-102.	0.3	12
248	Fabrication and characterization of a piezoelectric micromirror using for optical data tracking of high-density storage. Microsystem Technologies, 2014, 20, 1317-1322.	1.2	12
249	Axiolitic ZnO rods wrapped with reduced graphene oxide: Fabrication, microstructure and highly efficient microwave absorption. Materials Letters, 2019, 241, 14-17.	1.3	12
250	Simulation of multiple composite coatings based on conducting plate and investigation of microwave reflectivity. Microwave and Optical Technology Letters, 2002, 34, 442-445.	0.9	11
251	Effects of concentration of chloride anion on the morphology and microstructure of precipitates from lead nitrate solutions. CrystEngComm, 2010, 12, 1790.	1.3	11
252	<i>β</i> -MnO ₂ /SiO ₂ Core–Shell Nanorods: Synthesis and Dielectric Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 6953-6958.	0.9	11

#	Article	IF	CITATIONS
253	Dielectric, piezoelectric, and ferroelectric properties of Al ₂ O ₃ and MnO ₂ modified PbSnO ₃ -PbTiO ₃ -Pb(Mg _{1/3}) Tj ETQq1 1 Materials Science 2013 210 1363-1368	0.784314 rgE	3T/Overlock
254	Effects of electrodes on ferroelectric properties of PNZT films prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2016, 78, 258-261.	1.1	11
255	Improved dielectric properties and microwave absorbing properties of SiC Nanorods/Ni core-shell structure. Functional Materials Letters, 2017, 10, 1750069.	0.7	11
256	An electromagnetic wave absorbing material with potential application prospects—WS ₂ nanosheets. Integrated Ferroelectrics, 2019, 200, 108-116.	0.3	11
257	Constructing MXene-PANI@MWCNTs heterojunction with high specific capacitance towards flexible micro-supercapacitor. Nanotechnology, 2022, 33, 295401.	1.3	11
258	Synthesis process and growth mechanism of Y′-Fe4N nanoparticles by phase- transformation. Science in China Series D: Earth Sciences, 2003, 46, 104.	0.9	10
259	Piezoelectric, ferroelectric and mechanical properties of lead zirconate titanate/zinc oxide nanowhisker ceramics. Journal of Materials Science: Materials in Electronics, 2011, 22, 1393-1399.	1.1	10
260	Polarization Mechanism of Oxygen Vacancy and Its Influence on Dielectric Properties in ZnO. Chinese Physics Letters, 2011, 28, 027101.	1.3	10
261	Electrical Properties of Lead Zirconate Titanate Thick Film Containing Micro- and Nano-Crystalline Particles. Chinese Physics Letters, 2012, 29, 058101.	1.3	10
262	Facile Sizeâ€Controllable Synthesis of Colorful Quasiâ€Cubic αâ€Fe ₂ O ₃ Materials from Nanoscale to Microscale and Their Properties Related to the Size Effect. ChemPlusChem, 2013, 78, 875-883.	1.3	10
263	Hierarchical C/Co3O4 nanoarray on a nickel substrate integrating electromagnetic and thermal shielding. Materials Chemistry Frontiers, 2021, 5, 6553-6558.	3.2	10
264	Theoretical studies on the optical properties of group-III elements doped SiCNTs. Optical Materials, 2021, 117, 111148.	1.7	10
265	The behavior of permeable multi-cracks in a piezoelectric material. Mechanics Research Communications, 2003, 30, 395-402.	1.0	9
266	Thickness-dependent electrical properties of sol–gel derived Pb(Zr0.52Ti0.48)O3 thick films using PbTiO3 buffer layers. Journal of Materials Science: Materials in Electronics, 2013, 24, 3521-3525.	1.1	9
267	Structural and ferroelectric properties of textured KNN thick films prepared by sol-gel methods. Integrated Ferroelectrics, 2016, 176, 171-178.	0.3	9
268	Strong mechanics and broadened microwave absorption of graphene-based sandwich structures and surface-patterned structures. Journal of Materials Science: Materials in Electronics, 2018, 29, 9683-9691.	1.1	9
269	Morphology and structure of WS2 nanosheets prepared by solvothermal method with surfactants. Integrated Ferroelectrics, 2018, 188, 24-30.	0.3	9
270	Rutile TiO2 nanorod with anomalous resonance for charge storage and frequency selective absorption. Ceramics International, 2021, 47, 2016-2021.	2.3	9

#	Article	IF	CITATIONS
271	Temperature- and diameter-dependent electrical conductivity of nitrogen doped ZnO nanowires. European Physical Journal B, 2019, 92, 1.	0.6	8
272	Effect of surface dangling bonds on transport properties of phosphorous doped SiC nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 247-253.	1.3	8
273	Highly efficient and giant negative electrocaloric effect of a Nb and Sn co-doped lead zirconate titanate antiferroelectric film near room temperature. RSC Advances, 2019, 9, 34114-34119.	1.7	7
274	Tailoring surface capacitance of Ti3C2Tx-PANI@CNTs nanoarchitecture for tunable energy storage and high-performance micro-supercapacitor. Ceramics International, 2022, 48, 21935-21944.	2.3	7
275	Electronic scattering leads to anomalous thermal conductivity of n-type cubic silicon carbide in the high-temperature region. Journal of Physics Condensed Matter, 2012, 24, 445802.	0.7	6
276	High-Temperature Permittivity and Data-Mining of Silicon Dioxide at GHz Band. Chinese Physics Letters, 2012, 29, 027701.	1.3	6
277	First-principles study on the geometric and electronic structures and phase transition of PbZr _{1â^'<i>x</i>} Ti _{<i>x</i>} O ₃ solid solutions. Chinese Physics B, 2013, 22, 017702.	0.7	6
278	Numerical predictions of the mechanical properties of NT-ZnOw reinforced composites. Computational Materials Science, 2015, 96, 185-190.	1.4	6
279	Different substitutions lead to differences in the transport and recombination properties of group V doped SiCNTs. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126602.	0.9	6
280	Theoretical analysis of 2D acceleration laser sensor and several design parameters. Optics and Laser Technology, 2003, 35, 345-348.	2.2	5
281	MWCNTs/SiO ₂ Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties. Chinese Physics Letters, 2011, 28, 107701.	1.3	5
282	Radiative recombination model of degenerate semiconductor and photoluminescence properties of 3C-SiC by P and N doping. Journal of Applied Physics, 2012, 112, 033508.	1.1	5
283	Facile Preparation, Characterization, and Highly Effective Microwave Absorption Performance of CNTs/Fe _{3} O _{4} /PANI Nanocomposites. Journal of Nanomaterials, 2013, 2013, 1-7.	1.5	5
284	Enhanced photoconductivity of 3C-SiC by Al/N codoping. Journal of Applied Physics, 2013, 114, 104901.	1.1	5
285	Modified hydrothermal synthesis and structural characterization of monoclinic (K Na1â^)NbO3 (0.05â‰æâ‰0.15) rods. Ceramics International, 2015, 41, 8837-8842.	2.3	5
286	Synthesis and magnetic properties of CdS∬±-Fe2O3 hierarchical nanostructures. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 997-1002.	0.2	4
287	Design, Simulation and Optimisation of a Fibre-optic 3D Accelerometer. Optics and Laser Technology, 2013, 49, 137-142.	2.2	4
288	The Growth Behavior and Mechanism of KNN Nanorods with Sol-gel Route. Integrated Ferroelectrics, 2015, 160, 135-141.	0.3	4

#	Article	IF	CITATIONS
289	Electronic Structures and Adsorption of Li-Doped Graphenes for CO. Chinese Physics Letters, 2015, 32, 036802.	1.3	4
290	Investigation on Potential Microwave Absorbability of Polyester-composites Filled with Carbon Nanotubes. , 2006, , .		3
291	Different Roles of a Boron Substitute for Carbon and Silicon in β-SiC. Chinese Physics Letters, 2012, 29, 077102.	1.3	3
292	Multiple nonlinear dielectric resonance of ultra-long silver trimolybdate nanowires. Journal of Solid State Chemistry, 2013, 202, 320-323.	1.4	3
293	Dynamic Mechanical Behavior and Failure Mechanism of Polymer Composites Embedded with Tetraneedle-Shaped ZnO Whiskers. Chinese Physics Letters, 2013, 30, 016203.	1.3	3
294	Effects of Oxygen Vacancy on Optical and Electrical Properties of ZnO Bulks and Nanowires. Chinese Physics Letters, 2014, 31, 117301.	1.3	3
295	Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation. Chinese Physics Letters, 2011, 28, 027302.	1.3	2
296	Effects of N doping on photoelectric properties of along different directions of ZnO bulk and nanotube. Chinese Physics B, 2014, 23, 126102.	0.7	2
297	Structures and electrical properties of pure and vacancy-included ZnO NWs of different sizes. Chinese Physics B, 2015, 24, 127307.	0.7	2
298	Ti ₃ C ₂ T _x nanohybrids: tunable local conductive network and efficient EMI shielding performance for multifunctional materials and devices. Nanotechnology, 2021, 32, 442002.	1.3	2
299	Annealed Ti3C2Tx: A green and tunable electromagnetic interference shielding material. Ceramics International, 2022, 48, 10516-10525.	2.3	2
300	Sol-Gel Synthesis and Characterization of Nd3+ Doped PZT Nanopowders Using a Novel System. , 2006, ,		1
301	A Valve-less PZT Micropump with Isosceles Triangle Cross-section Diffuser Elements. , 2006, , .		1
302	Micro-Nanometer Parasitic Crystal Growth and Photoluminescence Property of Unique Screw-Cone Like Zn ₂ GeO ₄ -ZnO by Combustion Oxidization. Chinese Physics Letters, 2012, 29, 108101.	1.3	1
303	Synthesis and electrical properties of Pb(Zr0.52Ti0.48)O3 thick films embedded with ZnO nanoneedles prepared by the hybrid sol–gel method. Journal of Materials Science: Materials in Electronics, 2013, 24, 2521-2526.	1.1	1
304	Facile Preparation, Characterization and Photocatalytic Performance of Micro–nanometer Zn ₂ GeO ₄ –ZnO Screws–Cone–like Parasitic Crystals. Integrated Ferroelectrics, 2013, 147, 85-89.	0.3	1
305	The synergetic electromagnetic properties and enhanced microwave absorption of BiFeO3/BaFe7(MnTi)2.5O19 composite. Journal of Materials Science: Materials in Electronics, 2018, 29, 19739-19747.	1.1	1
306	A Novel Design and Fabrication of V Type Valve Microactuator with PZT Prepared by Sol-Gel. , 2006, , .		0

306 A Novel Design and Fabrication of V Type Valve Microactuator with PZT Prepared by Sol-Gel. , 2006, , .

#	Article	IF	CITATIONS
307	Design and simulation of MEMS silicon micro-cantilever resonant sensor. Proceedings of SPIE, 2007, , .	0.8	0
308	Effect of Sn Content on the Phase Structure and Electrical Properties of PbSnO3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Ternary Ceramics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2014, 29, 28-32.	0.6	0