Ana C Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8663912/publications.pdf

Version: 2024-02-01

713013 623188 29 470 14 21 citations g-index h-index papers 29 29 29 603 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Madeira wine ageing prediction based on different analytical techniques: UV–vis, GC-MS, HPLC-DAD. Chemometrics and Intelligent Laboratory Systems, 2011, 105, 43-55.	1.8	55
2	Analysis and assessment of Madeira wine ageing over an extended time period through GC–MS and chemometric analysis. Analytica Chimica Acta, 2010, 660, 8-21.	2.6	49
3	Rapid and sensitive methodology for determination of ethyl carbamate in fortified wines using microextraction by packed sorbent and gas chromatography with mass spectrometric detection. Analytica Chimica Acta, 2014, 811, 29-35.	2.6	40
4	Aroma ageing trends in GC/MS profiles of liqueur wines. Analytica Chimica Acta, 2010, 659, 93-101.	2.6	33
5	Quality Control of Food Products using Image Analysis and Multivariate Statistical Tools. Industrial & Engineering Chemistry Research, 2009, 48, 988-998.	1.8	31
6	Optimal design of experiments applied to headspace solid phase microextraction for the quantification of vicinal diketones in beer through gas chromatography-mass spectrometric detection. Analytica Chimica Acta, 2015, 887, 101-110.	2.6	23
7	Evaluation of Wine Colour Under Accelerated and Oak-Cask Ageing Using CIELab and Chemometric Approaches. Food and Bioprocess Technology, 2015, 8, 2309-2318.	2.6	23
8	Advanced predictive methods for wine age prediction: Part II \hat{a} \in " A comparison study of multiblock regression approaches. Talanta, 2017, 171, 132-142.	2.9	22
9	Evaluation of fucoxanthin contents in seaweed biomass by vortex-assisted solid-liquid microextraction using high-performance liquid chromatography with photodiode array detection. Algal Research, 2019, 42, 101603.	2.4	21
10	Development of a fast and reliable method for long- and short-term wine age prediction. Talanta, 2011, 86, 293-304.	2.9	20
11	Advanced predictive methods for wine age prediction: Part I – A comparison study of single-block regression approaches based on variable selection, penalized regression, latent variables and tree-based ensemble methods. Talanta, 2017, 171, 341-350.	2.9	18
12	Chemometric analysis of the volatile fraction evolution of Portuguese beer under shelf storage conditions. Chemometrics and Intelligent Laboratory Systems, 2015, 142, 131-142.	1.8	17
13	Modelling the ageing process: A novel strategy to analyze the wine evolution towards the expected features. Chemometrics and Intelligent Laboratory Systems, 2016, 154, 176-184.	1.8	14
14	Rapid Determination of Sotolon in Fortified Wines Using a Miniaturized Liquid-Liquid Extraction Followed by LC-MS/MS Analysis. Journal of Analytical Methods in Chemistry, 2018, 2018, 1-7.	0.7	14
15	Definitive Screening Designs and latent variable modelling for the optimization of solid phase microextraction (SPME): Case study - Quantification of volatile fatty acids in wines. Chemometrics and Intelligent Laboratory Systems, 2018, 179, 73-81.	1.8	13
16	An experimental design methodology to evaluate the importance of different parameters on flocculation by polyelectrolytes. Powder Technology, 2013, 238, 2-13.	2.1	12
17	Amino Acids and Biogenic Amines Evolution during the <i>Estufagem</i> of Fortified Wines. Journal of Chemistry, 2015, 2015, 1-9.	0.9	12
18	Nutritional and Phytochemical Composition of <i>Vaccinium padifolium</i> Sm Wild Berries and Radical Scavenging Activity. Journal of Food Science, 2017, 82, 2554-2561.	1.5	9

#	Article	IF	CITATIONS
19	Multi-target optimization of solid phase microextraction to analyse key flavour compounds in wort and beer. Food Chemistry, 2020, 317, 126466.	4.2	9
20	A Sensitive Method for the Rapid Determination of Underivatized Ethyl Carbamate in Fortified Wine by Liquid Chromatography-Electrospray Tandem Mass Spectrometry. Food Analytical Methods, 2018, 11, 327-333.	1.3	7
21	Multiresponse and multiobjective latent variable optimization of modern analytical instrumentation for the quantification of chemically related families of compounds: Case studyâ€"Solidâ€phase microextraction (SPME) applied to the quantification of analytes with impact on wine aroma. Journal of Chemometrics. 2019. 33. e3103.	0.7	7
22	The Influence of Transport and Storage Conditions on Beer Stability—a Systematic Review. Food and Bioprocess Technology, 2022, 15, 1477-1494.	2.6	7
23	A Simple Emulsification-Assisted Extraction Method for the GC–MS/SIM Analysis of Wine Markers of Aging and Oxidation: Application for Studying Micro-Oxygenation in Madeira Wine. Food Analytical Methods, 2018, 11, 2056-2065.	1.3	6
24	Agricultural Rum of Madeira matured on the seafloor: improved physicochemical changes induced by a pioneering seafloor ageing process. European Food Research and Technology, 2021, 247, 3023-3035.	1.6	3
25	Assessment of Staling Aldehydes in Lager Beer under Maritime Transport and Storage Conditions. Molecules, 2022, 27, 600.	1.7	3
26	Multivariate Statistical Monitoring of Wine Ageing Processes. Computer Aided Chemical Engineering, 2010, , 247-252.	0.3	1
27	Emerging Trends in Fortified Wines: A Scientific Perspective. , 2019, , 419-470.		1
28	Development of Generalized Platforms for the Analysis of Complex Datasets. Quality and Reliability Engineering International, 2012, 28, 508-523.	1.4	0
29	Unveiling the Evolution of Madeira Wine Key Metabolites: A Three-Year Follow-Up Study. Processes, 2022, 10, 1019.	1.3	O