Changsheng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8663903/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 150-161.	5.6	74
2	Effect of laser energy density on defects behavior of direct laser depositing 24CrNiMo alloy steel. Optics and Laser Technology, 2019, 111, 541-553.	4.6	69
3	Selective laser melting of 24CrNiMo steel for brake disc: Fabrication efficiency, microstructure evolution, and properties. Optics and Laser Technology, 2018, 107, 99-109.	4.6	60
4	Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure. Powder Technology, 2020, 367, 724-739.	4.2	50
5	Effect of laser incident energy on microstructures and mechanical properties of 12CrNi2Y alloy steel by direct laser deposition. Journal of Materials Science and Technology, 2019, 35, 395-402.	10.7	43
6	Effect of atomization pressure on the breakup of TA15 titanium alloy powder prepared by EIGA method for laser 3D printing. Vacuum, 2017, 143, 185-194.	3.5	40
7	Effects of LaB6 on microstructure evolution and properties of in-situ synthetic TiC+TiBx reinforced titanium matrix composite coatings prepared by laser cladding. Surface and Coatings Technology, 2020, 403, 126409.	4.8	31
8	Microstructure and properties of 24CrNiMoY alloy steel prepared by direct laser deposited under different preheating temperatures. Materials Characterization, 2019, 158, 109931.	4.4	26
9	The effect of laser scanning speed on microstructural evolution during direct laser deposition 12CrNi2 alloy steel. Optics and Laser Technology, 2020, 125, 106041.	4.6	25
10	Thermal behavior and grain evolution of 24CrNiMoY alloy steel prepared by pre-laid laser cladding technology. Optics and Laser Technology, 2019, 119, 105613.	4.6	23
11	Microstructure evolution of 24CrNiMoY alloy steel parts by high power selective laser melting. Journal of Manufacturing Processes, 2019, 44, 28-37.	5.9	21
12	The Effect of Specific Energy Density on Microstructure and Corrosion Resistance of CoCrMo Alloy Fabricated by Laser Metal Deposition. Materials, 2019, 12, 1321.	2.9	21
13	Microstructure and mechanical properties of short-carbon-fiber/Ti3SiC2 composites. Journal of Advanced Ceramics, 2020, 9, 716-725.	17.4	19
14	Effect of laser energy volume density on wear resistance and corrosion resistance of 30Cr15MoY alloy steel coating prepared by laser direct metal deposition. Surface and Coatings Technology, 2021, 421, 127382.	4.8	19
15	Titanium Extraction from Titania-Bearing Blast Furnace Slag: A Review. Jom, 2022, 74, 654-667.	1.9	18
16	Microstructure and performances of graphite scattered Cr3C2-NiCr composites prepared by laser processing. Materials Letters, 2013, 93, 304-307.	2.6	17
17	The effect of Si and B on formability and wear resistance of preset-powder laser cladding W10V5Co4 alloy steel coating. Optics and Laser Technology, 2021, 134, 106590.	4.6	16
18	Microstructural Evolution and Properties of 24CrNiMoY Alloy Steel Fabricated by Selective Laser Melting. Journal of Materials Engineering and Performance, 2019, 28, 5521-5532.	2.5	15

CHANGSHENG LIU

#	Article	IF	CITATIONS
19	Covalent modification of graphene oxide by 4,4′-methylenebis(phenyl isocyanate) to enhance corrosion resistance of polystyrene coating. Colloid and Polymer Science, 2019, 297, 839-848.	2.1	15
20	A new 50Cr6Ni2Y alloy steel prepared by Direct laser Deposition: Its design, microstructure and properties. Optics and Laser Technology, 2020, 126, 106080.	4.6	12
21	Interfacial reactions and mechanical properties of SiC fiber reinforced Ti3SiC2 and Ti3(SiAl)C2 composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142069.	5.6	11
22	Effect of Nano-Y2O3 on Microstructure and Crack Formation in Laser Direct-Deposited In Situ Particle-Reinforced Fe-Based Coatings. Journal of Materials Engineering and Performance, 2018, 27, 1154-1167.	2.5	10
23	Layered 50Cr6Ni2/Stellite X-40 Multi-material Fabricated by Direct Laser Deposition: Characterization and Properties. Metals and Materials International, 2021, 27, 40-49.	3.4	10
24	Microstructure evolution and properties of direct laser deposited 24CrNiMoY alloy steel assisted by non-contact ultrasonic treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 811, 141088.	5.6	10
25	Equilibrium Phase Relations of the CaO-SiO2-Ti3O5 System at 1400 ŰC and a p(O2) of 10â^'16 atm. Jom, 2022, 74, 668-675.	1.9	10
26	Real-Time Monitoring of Chemical Composition in Nickel-Based Laser Cladding Layer by Emission Spectroscopy Analysis. Materials, 2019, 12, 2637.	2.9	9
27	Preparation and printability of high performance 15Cr13MoY alloy steel powder for direct laser deposition. Powder Metallurgy, 2019, 62, 218-228.	1.7	9
28	Formation and Elimination Mechanism of Lack of Fusion and Cracks in Direct Laser Deposition 24CrNiMoY Alloy Steel. Journal of Materials Engineering and Performance, 2020, 29, 6439-6454.	2.5	9
29	Preparation of TA15 powder reinforced 45CrNiMoY alloy steel with high mechanical property by pre-laid laser cladding technology. Materials Characterization, 2020, 160, 110097.	4.4	8
30	Effects of carbon fibers on the microstructure and properties of laser cladding 24CrNiMoY alloy steel. Journal of Manufacturing Processes, 2021, 62, 337-347.	5.9	8
31	Study of surface topography detection and analysis methods of direct laser deposition 24CrNiMo alloy steel. Optics and Laser Technology, 2021, 135, 106661.	4.6	7
32	Impact of Atomization Pressure on the Particle Size of Nickel-Based Superalloy Powders by Numerical Simulation. Materials, 2022, 15, 3020.	2.9	5
33	Characteristics and printability of K417G nickel-base alloy powder prepared by VIGA method. Powder Metallurgy, 2019, 62, 30-37.	1.7	4
34	Evolution mechanism and precipitation kinetics of carbides in 50Cr6Ni2Y alloy steel by direct laser deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141535.	5.6	4
35	Equilibrium Phase Relations of a SiO ₂ –Al ₂ O ₃ –FeO <i>_x</i> System with 10 wt % CaO Addition for the Production of Continuous Basalt Fibers. ACS Omega, 2021, 6, 21465-21471.	3.5	4
36	Heterostructured Bi2O3@rGO Anode for Electrochemical Sodium Storage. Materials, 2022, 15, 2787.	2.9	2

#	Article	IF	CITATIONS
37	Microstructure and properties of high power-SLM 24CrNiMoY alloy steel at different laser energy density and tempering temperature. Powder Metallurgy, 2021, 64, 23-34.	1.7	1
38	Effect of Hot Isostatic Pressing on Microstructure of 24CrNiMo Steel Produced by Selective Laser Melting. Mechanisms and Machine Science, 2021, , 467-476.	0.5	0
39	Equilibrium Phase Relations for a SiO2-Al2O3-FeOx System at 1300 °C and 1400 °C in Air. Metals, 2022, 12, 926.	2.3	0