

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8663420/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	1.7	39
2	Fine Ashâ€Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
3	Limitations in representation of physical processes prevent successful simulation of PM _{2.5} during KORUS-AQ. Atmospheric Chemistry and Physics, 2022, 22, 7933-7958.	1.9	17
4	Characteristics and evolution of brown carbon in western United States wildfires. Atmospheric Chemistry and Physics, 2022, 22, 8009-8036.	1.9	21
5	Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements. Atmospheric Measurement Techniques, 2021, 14, 2237-2260.	1.2	12
6	Atmospheric Blocking Drives Recent Albedo Change Across the Western Greenland Ice Sheet Percolation Zone. Geophysical Research Letters, 2021, 48, e2021GL092814.	1.5	3
7	The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission. Atmospheric Measurement Techniques, 2021, 14, 3631-3655.	1.2	34
8	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth & Environment, 2021, 2, .	2.6	32
9	lsotopic evidence for dominant secondary production of HONO in near-ground wildfire plumes. Atmospheric Chemistry and Physics, 2021, 21, 13077-13098.	1.9	16
10	Assessment of online water-soluble brown carbon measuring systems for aircraft sampling. Atmospheric Measurement Techniques, 2021, 14, 6357-6378.	1.2	8
11	Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements. Atmospheric Chemistry and Physics, 2021, 21, 15023-15063.	1.9	15
12	Particulate Oxalateâ€Toâ€Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations. Geophysical Research Letters, 2021, 48, e2021GL096520.	1.5	6
13	Reconciling Assumptions in Bottomâ€Up and Topâ€Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREXâ€AQ. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	10
14	Asian dust observed during KORUS-AQ facilitates the uptake and incorporation of soluble pollutants during transport to South Korea. Atmospheric Environment, 2020, 224, 117305.	1.9	21
15	Global Measurements of Brown Carbon and Estimated Direct Radiative Effects. Geophysical Research Letters, 2020, 47, e2020GL088747.	1.5	61
16	Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples. Atmospheric Measurement Techniques, 2020, 13, 6193-6213.	1.2	6
17	The distribution of sea-salt aerosol in the global troposphere. Atmospheric Chemistry and Physics, 2019, 19, 4093-4104.	1.9	68
18	A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 6209-6239.	1.2	55

Ј Е В В

#	Article	IF	CITATIONS
19	Anthropogenic Control Over Wintertime Oxidation of Atmospheric Pollutants. Geophysical Research Letters, 2019, 46, 14826-14835.	1.5	28
20	Heterogeneous N ₂ O ₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4345-4372.	1.2	103
21	Constraints on Aerosol Nitrate Photolysis as a Potential Source of HONO and NO _{<i>x</i>} . Environmental Science & Technology, 2018, 52, 13738-13746.	4.6	79
22	Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 17769-17800.	1.9	105
23	ClNO ₂ Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,994.	1.2	31
24	Wintertime Gasâ€Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal Ocean. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,897.	1.2	21
25	Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7771-7796.	1.2	71
26	NO _{x} Lifetime and NO _{y} Partitioning During WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9813-9827.	1.2	52
27	Modeled Response of Greenland Snowmelt to the Presence of Biomass Burningâ€Based Absorbing Aerosols in the Atmosphere and Snow. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6122-6141.	1.2	10
28	Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire. Journal of Geophysical Research D: Atmospheres, 2017, 122, 121-139.	1.2	19
29	Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nature Geoscience, 2017, 10, 486-489.	5.4	168
30	A longer vernal window: the role of winter coldness and snowpack in driving spring transitions and lags. Global Change Biology, 2017, 23, 1610-1625.	4.2	57
31	Major fraction of black carbon is flushed from the melting New Hampshire snowpack nearly as quickly as soluble impurities. Journal of Geophysical Research D: Atmospheres, 2017, 122, 537-553.	1.2	11
32	Lightning NO _{<i>x</i>} Emissions: Reconciling Measured and Modeled Estimates With Updated NO _{<i>x</i>} Chemistry. Geophysical Research Letters, 2017, 44, 9479-9488.	1.5	56
33	Elements and inorganic ions as source tracers in recent Greenland snow. Atmospheric Environment, 2017, 164, 205-215.	1.9	25
34	Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada. Geophysical Research Letters, 2017, 44, 7965-7974.	1.5	41
35	Evidence of Road Salt in New Hampshire's Snowpack Hundreds of Meters from Roadways. Geosciences (Switzerland), 2017, 7, 54.	1.0	9
36	A simple model of snow albedo decay using observations from the Community Collaborative Rain, Hail, and Snow-Albedo (CoCoRaHS-Albedo) Network. Journal of Glaciology, 2017, 63, 877-887.	1.1	11

#	Article	IF	CITATIONS
37	Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,355.	1.2	176
38	Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC ⁴ RS) field mission. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4967-5009.	1.2	158
39	Why do models overestimate surface ozone in the Southeast United States?. Atmospheric Chemistry and Physics, 2016, 16, 13561-13577.	1.9	320
40	Impact of environmental variables on the reduction of nitric acid by proxies for volatile organic compounds emitted by motor vehicles. Atmospheric Pollution Research, 2016, 7, 221-227.	1.8	3
41	Evaluation of nitrous acid sources and sinks in urban outflow. Atmospheric Environment, 2016, 127, 272-282.	1.9	21
42	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.	1.1	23
43	Revealing important nocturnal and dayâ€ŧoâ€day variations in fire smoke emissions through a multiplatform inversion. Geophysical Research Letters, 2015, 42, 3609-3618.	1.5	73
44	Evolution of brown carbon in wildfire plumes. Geophysical Research Letters, 2015, 42, 4623-4630.	1.5	284
45	Neither dust nor black carbon causing apparent albedo decline in Greenland's dry snow zone: Implications for MODIS C5 surface reflectance. Geophysical Research Letters, 2015, 42, 9319-9327.	1.5	64
46	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmospheric Chemistry and Physics, 2015, 15, 6721-6744.	1.9	62
47	Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing. Atmospheric Chemistry and Physics, 2015, 15, 7841-7858.	1.9	96
48	Mercury Speciation at a Coastal Site in the Northern Gulf of Mexico: Results from the Grand Bay Intensive Studies in Summer 2010 and Spring 2011. Atmosphere, 2014, 5, 230-251.	1.0	19
49	Arctic Air Pollution: New Insights from POLARCAT-IPY. Bulletin of the American Meteorological Society, 2014, 95, 1873-1895.	1.7	107
50	Comparing MODIS daily snow albedo to spectral albedo field measurements in Central Greenland. Remote Sensing of Environment, 2014, 140, 118-129.	4.6	51
51	The reduction of HNO3 by volatile organic compounds emitted by motor vehicles. Atmospheric Environment, 2014, 87, 200-206.	1.9	11
52	Brown carbon in the continental troposphere. Geophysical Research Letters, 2014, 41, 2191-2195.	1.5	113
53	Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack. Cryosphere, 2013, 7, 1139-1160.	1.5	76
54	Heterogeneous conversion of nitric acid to nitrous acid on the surface of primary organic aerosol in an urban atmosphere. Atmospheric Environment, 2010, 44, 4081-4089.	1.9	65

#	Article	IF	CITATIONS
55	Simultaneous DOAS and mist-chamber IC measurements of HONO in Houston, TX. Atmospheric Environment, 2010, 44, 4090-4098.	1.9	75
56	Deciphering the Role of Radical Precursors during the Second Texas Air Quality Study. Journal of the Air and Waste Management Association, 2009, 59, 1258-1277.	0.9	65
57	High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nature Geoscience, 2008, 1, 324-328.	5.4	403
58	Results from the DC-8 Inlet Characterization Experiment (DICE): Airborne Versus Surface Sampling of Mineral Dust and Sea Salt Aerosols. Aerosol Science and Technology, 2007, 41, 136-159.	1.5	195
59	Direct Measurements of the Convective Recycling of the Upper Troposphere. Science, 2007, 315, 816-820.	6.0	114
60	Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow. Journal of Geophysical Research, 2007, 112, .	3.3	279
61	Seasonal variations in the soluble ion content of snow at Summit. Greenland: Constraints from three years of daily surface snow samples. Atmospheric Environment, 2007, 41, 5007-5019.	1.9	68
62	Relationships between surface and column aerosol radiative properties and air mass transport at a rural New England site. Journal of Geophysical Research, 2004, 109, .	3.3	15
63	Nighttime removal of NOxin the summer marine boundary layer. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	127
64	Airborne sampling of aerosol particles: Comparison between surface sampling at Christmas Island and P-3 sampling during PEM-Tropics B. Journal of Geophysical Research, 2003, 108, PEM 2-1.	3.3	20
65	Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE. Journal of Geophysical Research, 2003, 108, .	3.3	87
66	Aerosol chemical composition in Asian continental outflow during the TRACE-P campaign: Comparison with PEM-West B. Journal of Geophysical Research, 2003, 108, .	3.3	80
67	Composition and distribution of aerosols over the North Atlantic during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX). Journal of Geophysical Research, 2000, 105, 3709-3717.	3.3	31
68	Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics. Journal of Geophysical Research, 1999, 104, 5785-5800.	3.3	52
69	Air-snow exchange investigations at Summit, Greenland: An overview. Journal of Geophysical Research, 1997, 102, 26795-26807.	3.3	58
70	Large-scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime. Journal of Geophysical Research, 1997, 102, 28303-28313.	3.3	68