
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8663359/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. New England Journal of Medicine, 2015, 372, 2509-2520.	13.9	7,696
2	Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Science Translational Medicine, 2014, 6, 224ra24.	5.8	3,665
3	The Consensus Coding Sequences of Human Breast and Colorectal Cancers. Science, 2006, 314, 268-274.	6.0	3,130
4	The Genomic Landscapes of Human Breast and Colorectal Cancers. Science, 2007, 318, 1108-1113.	6.0	3,049
5	Pancreatic cancer. Lancet, The, 2016, 388, 73-85.	6.3	1,826
6	Exome Sequencing of Head and Neck Squamous Cell Carcinoma Reveals Inactivating Mutations in <i>NOTCH1</i> . Science, 2011, 333, 1154-1157.	6.0	1,568
7	<i>TERT</i> promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6021-6026.	3.3	1,202
8	Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 2019, 178, 795-806.e12.	13.5	830
9	Recurrent <i>GNAS</i> Mutations Define an Unexpected Pathway for Pancreatic Cyst Development. Science Translational Medicine, 2011, 3, 92ra66.	5.8	703
10	Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer Discovery, 2018, 8, 1112-1129.	7.7	676
11	A Revised Classification System and Recommendations From the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. American Journal of Surgical Pathology, 2015, 39, 1730-1741.	2.1	626
12	Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21188-21193.	3.3	585
13	Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nature Genetics, 2013, 45, 1470-1473.	9.4	564
14	High grade serous ovarian carcinomas originate in the fallopian tube. Nature Communications, 2017, 8, 1093.	5.8	515
15	Mutations in <i>CIC</i> and <i>FUBP1</i> Contribute to Human Oligodendroglioma. Science, 2011, 333, 1453-1455.	6.0	485
16	Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nature Medicine, 2016, 22, 497-505.	15.2	456
17	Cancer-Associated Mutations in Endometriosis without Cancer. New England Journal of Medicine, 2017, 376, 1835-1848.	13.9	451
18	Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nature Genetics. 2011. 43. 828-829.	9.4	392

#	Article	IF	CITATIONS
19	Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nature Genetics, 2017, 49, 358-366.	9.4	316
20	Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16224-16229.	3.3	285
21	Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discovery, 2016, 6, 166-175.	7.7	282
22	Somatic mutations of SUZ12 in malignant peripheral nerve sheath tumors. Nature Genetics, 2014, 46, 1170-1172.	9.4	247
23	Exomic Sequencing of Medullary Thyroid Cancer Reveals Dominant and Mutually Exclusive Oncogenic Mutations in RET and RAS. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E364-E369.	1.8	213
24	Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology, 2022, 163, 386-402.e1.	0.6	204
25	<i>Neat1</i> is a p53-inducible lincRNA essential for transformation suppression. Genes and Development, 2017, 31, 1095-1108.	2.7	179
26	RUNX3 Controls a Metastatic Switch in Pancreatic Ductal Adenocarcinoma. Cell, 2015, 161, 1345-1360.	13.5	175
27	Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget, 2014, 5, 2839-2852.	0.8	171
28	Wholeâ€exome sequencing of pancreatic neoplasms with acinar differentiation. Journal of Pathology, 2014, 232, 428-435.	2.1	151
29	Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nature Communications, 2014, 5, 5006.	5.8	149
30	Genomic Sequencing Identifies ELF3 as a Driver of Ampullary Carcinoma. Cancer Cell, 2016, 29, 229-240.	7.7	147
31	A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell, 2017, 32, 460-473.e6.	7.7	142
32	Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: histology, molecular pathology and clinical implications. Gut, 2021, 70, 148-156.	6.1	139
33	Circulating Tumor Cell Phenotype Predicts Recurrence and Survival in Pancreatic Adenocarcinoma. Annals of Surgery, 2016, 264, 1073-1081.	2.1	131
34	Circulating Tumor Cells Dynamics in Pancreatic Adenocarcinoma Correlate With Disease Status. Annals of Surgery, 2018, 268, 408-420.	2.1	125
35	A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nature Cancer, 2020, 1, 59-74.	5.7	124
36	A multidimensional analysis of genes mutated in breast and colorectal cancers. Genome Research, 2007, 17, 1304-1318.	2.4	121

#	Article	IF	CITATIONS
37	Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution. Genome Research, 2015, 25, 1536-1545.	2.4	121
38	Pathology and Molecular Genetics of Pancreatic Neoplasms. Cancer Journal (Sudbury, Mass), 2012, 18, 492-501.	1.0	114
39	Recurrent Rearrangements in PRKACA and PRKACB in Intraductal Oncocytic Papillary Neoplasms of the Pancreas andÂBile Duct. Gastroenterology, 2020, 158, 573-582.e2.	0.6	110
40	Genetic analyses of isolated highâ€grade pancreatic intraepithelial neoplasia (HGâ€PanIN) reveal paucity of alterations in <i>TP53</i> and <i>SMAD4</i> . Journal of Pathology, 2017, 242, 16-23.	2.1	108
41	Targeted DNA Sequencing Reveals Patterns of Local Progression in the Pancreatic Remnant Following Resection of Intraductal Papillary Mucinous Neoplasm (IPMN) of the Pancreas. Annals of Surgery, 2017, 266, 133-141.	2.1	106
42	Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clinical Epigenetics, 2019, 11, 59.	1.8	106
43	Upper Gl Tract Lesions in Familial Adenomatous Polyposis (FAP). American Journal of Surgical Pathology, 2014, 38, 389-393.	2.1	105
44	Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature, 2017, 542, 362-366.	13.7	105
45	IPMNs with co-occurring invasive cancers: neighbours but not always relatives. Gut, 2018, 67, 1652-1662.	6.1	104
46	Radiologic-Pathologic Analysis of Contrast-enhanced and Diffusion-weighted MR Imaging in Patients with HCC after TACE: Diagnostic Accuracy of 3D Quantitative Image Analysis. Radiology, 2014, 273, 746-758.	3.6	98
47	Neutrophil-to-lymphocyte Ratio is a Predictive Marker for Invasive Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Annals of Surgery, 2017, 266, 339-345.	2.1	93
48	Exomic analysis of myxoid liposarcomas, synovial sarcomas, and osteosarcomas. Genes Chromosomes and Cancer, 2014, 53, 15-24.	1.5	91
49	Circulating Tumor Cells Expressing Markers of Tumor-Initiating Cells Predict Poor Survival and Cancer Recurrence in Patients with Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2017, 23, 2681-2690.	3.2	91
50	Intraductal Transplantation Models of Human Pancreatic Ductal Adenocarcinoma Reveal Progressive Transition of Molecular Subtypes. Cancer Discovery, 2020, 10, 1566-1589.	7.7	90
51	Somatic mutations of GUCY2F, EPHA3, and NTRK3 in human cancers. Human Mutation, 2006, 27, 1060-1061.	1.1	87
52	Very Long-term Survival Following Resection for Pancreatic Cancer Is Not Explained by Commonly Mutated Genes: Results of Whole-Exome Sequencing Analysis. Clinical Cancer Research, 2015, 21, 1944-1950.	3.2	85
53	Intraductal Papillary Mucinous Neoplasms Arise From Multiple Independent Clones, Each With Distinct Mutations. Gastroenterology, 2019, 157, 1123-1137.e22.	0.6	82
54	Whole-Genome Sequencing of Salivary Gland Adenoid Cystic Carcinoma. Cancer Prevention Research, 2016, 9, 265-274.	0.7	80

#	Article	IF	CITATIONS
55	Intraductal papillary mucinous neoplasm (IPMN) with high-grade dysplasia is a risk factor for the subsequent development of pancreatic ductal adenocarcinoma. Hpb, 2016, 18, 236-246.	0.1	79
56	Pancreatic undifferentiated carcinoma with osteoclastâ€like giant cells is genetically similar to, but clinically distinct from, conventional ductal adenocarcinoma. Journal of Pathology, 2017, 243, 148-154.	2.1	79
57	Genomic characterization of malignant progression in neoplastic pancreatic cysts. Nature Communications, 2020, 11, 4085.	5.8	77
58	Why is pancreatic cancer so deadly? The pathologist's view. Journal of Pathology, 2019, 248, 131-141.	2.1	76
59	Resection of borderline resectable pancreatic cancer after neoadjuvant chemoradiation does not depend on improved radiographic appearance of tumor–vessel relationships. Journal of Radiation Oncology, 2013, 2, 413-425.	0.7	74
60	The Evolutionary Origins of Recurrent Pancreatic Cancer. Cancer Discovery, 2020, 10, 792-805.	7.7	71
61	Exomic Sequencing of Four Rare Central Nervous System Tumor Types. Oncotarget, 2013, 4, 572-583.	0.8	69
62	The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma. PLoS ONE, 2017, 12, e0180181.	1.1	68
63	From somatic mutation to early detection: insights from molecular characterization of pancreatic cancer precursor lesions. Journal of Pathology, 2018, 246, 395-404.	2.1	67
64	Early detection of pancreatic cancer using DNA-based molecular approaches. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 457-468.	8.2	67
65	Prognostic role and implications of mutation status of tumor suppressor gene ARID1A in cancer: a systematic review and meta-analysis. Oncotarget, 2015, 6, 39088-39097.	0.8	67
66	Clinical, genomic, and metagenomic characterization of oral tongue squamous cell carcinoma in patients who do not smoke. Head and Neck, 2015, 37, 1642-1649.	0.9	66
67	Lichenoid Esophagitis. American Journal of Surgical Pathology, 2013, 37, 1889-1894.	2.1	64
68	Pathological and Molecular Evaluation of Pancreatic Neoplasms. Seminars in Oncology, 2015, 42, 28-39.	0.8	64
69	Genetic Analysis of Small Well-differentiated Pancreatic Neuroendocrine Tumors Identifies Subgroups With Differing Risks of Liver Metastases. Annals of Surgery, 2020, 271, 566-573.	2.1	64
70	A Monoclonal Antibody-GDNF Fusion Protein Is Not Neuroprotective and Is Associated with Proliferative Pancreatic Lesions in Parkinsonian Monkeys. PLoS ONE, 2012, 7, e39036.	1.1	59
71	Pathology and genetics of pancreatic neoplasms with acinar differentiation. Seminars in Diagnostic Pathology, 2014, 31, 491-497.	1.0	59
72	Somatic mutations in the notch, NFâ€KB, PIK3CA, and hedgehog pathways in human breast cancers. Genes Chromosomes and Cancer, 2012, 51, 480-489.	1.5	58

#	Article	IF	CITATIONS
73	Different prognostic roles of tumor suppressor gene <i>BAP1</i> in cancer: A systematic review with metaâ€analysis. Genes Chromosomes and Cancer, 2016, 55, 741-749.	1.5	58
74	Pattern of Invasion in Human Pancreatic Cancer Organoids Is Associated with Loss of SMAD4 and Clinical Outcome. Cancer Research, 2020, 80, 2804-2817.	0.4	58
75	Cell of Origin Influences Pancreatic Cancer Subtype. Cancer Discovery, 2021, 11, 660-677.	7.7	58
76	Comprehensive Genomic Profiling of Neuroendocrine Carcinomas of the Gastrointestinal System. Cancer Discovery, 2022, 12, 692-711.	7.7	58
77	Chromophobe hepatocellular carcinoma with abrupt anaplasia: a proposal for a new subtype of hepatocellular carcinoma with unique morphological and molecular features. Modern Pathology, 2013, 26, 1586-1593.	2.9	56
78	Genetics of Familial and Sporadic Pancreatic Cancer. Gastroenterology, 2019, 156, 2041-2055.	0.6	52
79	Singleâ€cell sequencing defines genetic heterogeneity in pancreatic cancer precursor lesions. Journal of Pathology, 2019, 247, 347-356.	2.1	52
80	Pancreatic adenocarcinoma pathology: changing "landscape". Journal of Gastrointestinal Oncology, 2015, 6, 358-74.	0.6	50
81	Multiregion whole-exome sequencing of intraductal papillary mucinous neoplasms reveals frequent somatic <i>KLF4</i> mutations predominantly in low-grade regions. Gut, 2021, 70, 928-939.	6.1	48
82	Prevalence of Germline Mutations Associated With Cancer Risk in Patients With Intraductal Papillary Mucinous Neoplasms. Gastroenterology, 2019, 156, 1905-1913.	0.6	47
83	Three-dimensional visualization of cleared human pancreas cancer reveals that sustained epithelial-to-mesenchymal transition is not required for venous invasion. Modern Pathology, 2020, 33, 639-647.	2.9	47
84	PD-1, PD-L1, and CD163 in pancreatic undifferentiated carcinoma with osteoclast-like giant cells: expression patterns and clinical implications. Human Pathology, 2018, 81, 157-165.	1.1	44
85	Genetics of pancreatic neuroendocrine tumors: implications for the clinic. Expert Review of Gastroenterology and Hepatology, 2015, 9, 1407-1419.	1.4	43
86	Extranodal Extension of Nodal Metastases Is a Poor Prognostic Indicator in Gastric Cancer: a Systematic Review and Meta-analysis. Journal of Gastrointestinal Surgery, 2016, 20, 1692-1698.	0.9	41
87	Building mitotic chromosomes. Current Opinion in Cell Biology, 2011, 23, 114-121.	2.6	40
88	Patients with McCune-Albright syndrome have a broad spectrum of abnormalities in the gastrointestinal tract and pancreas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 470, 391-400.	1.4	39
89	Immunolabeling of Cleared Human Pancreata Provides Insights into Three-Dimensional Pancreatic Anatomy and Pathology. American Journal of Pathology, 2018, 188, 1530-1535.	1.9	38
90	New Developments in the Molecular Mechanisms of Pancreatic Tumorigenesis. Advances in Anatomic Pathology, 2018, 25, 131-142.	2.4	37

#	Article	IF	CITATIONS
91	Pathology and Genetics of Syndromic Gastric Polyps. International Journal of Surgical Pathology, 2016, 24, 185-199.	0.4	35
92	Liquid Biopsy as Surrogate for Tissue for Molecular Profiling in Pancreatic Cancer: A Meta-Analysis Towards Precision Medicine. Cancers, 2019, 11, 1152.	1.7	33
93	Cancerization of the Pancreatic Ducts. American Journal of Surgical Pathology, 2018, 42, 1556-1561.	2.1	32
94	Molecular alterations associated with metastases of solid pseudopapillary neoplasms of the pancreas. Journal of Pathology, 2019, 247, 123-134.	2.1	32
95	Aberrant Menin expression is an early event in pancreatic neuroendocrine tumorigenesis. Human Pathology, 2016, 56, 93-100.	1.1	31
96	Pancreatic Neoplasms With Acinar Differentiation: A Review of Pathologic and Molecular Features. Archives of Pathology and Laboratory Medicine, 2020, 144, 808-815.	1.2	31
97	Extranodal extension of lymph node metastasis is a marker of poor prognosis in oesophageal cancer: a systematic review with meta-analysis. Journal of Clinical Pathology, 2016, 69, 956-961.	1.0	30
98	Molecular characterization of organoids derived from pancreatic intraductal papillary mucinous neoplasms. Journal of Pathology, 2020, 252, 252-262.	2.1	30
99	Circulating Epithelial Cells in Intraductal Papillary Mucinous Neoplasms and Cystic Pancreatic Lesions. Pancreas, 2017, 46, 943-947.	0.5	26
100	The genetics of ductal adenocarcinoma of the pancreas in the year 2020: dramatic progress, but far to go. Modern Pathology, 2020, 33, 2544-2563.	2.9	23
101	Correlation of Smad4 Status With Outcomes in Patients Receiving Erlotinib Combined With Adjuvant Chemoradiation and Chemotherapy After Resection for Pancreatic Adenocarcinoma. International Journal of Radiation Oncology Biology Physics, 2013, 87, 458-459.	0.4	21
102	Distinction of intrahepatic metastasis from multicentric carcinogenesis in multifocal hepatocellular carcinoma using molecular alterations. Human Pathology, 2018, 72, 127-134.	1.1	21
103	Morphology and genetics of pyloric gland adenomas in familial adenomatous polyposis. Histopathology, 2017, 70, 549-557.	1.6	20
104	Whole-exome sequencing of duodenal neuroendocrine tumors in patients with neurofibromatosis type 1. Modern Pathology, 2018, 31, 1532-1538.	2.9	20
105	Pancreatic cancer arising in the remnant pancreas is not always a relapse of the preceding primary. Modern Pathology, 2019, 32, 659-665.	2.9	20
106	Medullary Pancreatic Carcinoma Due to Somatic POLE Mutation. Pancreas, 2020, 49, 999-1003.	0.5	20
107	Analogous detection of circulating tumor cells using the AccuCyte [®] —CyteFinder [®] system and ISET system in patients with locally advanced and metastatic prostate cancer. Prostate, 2018, 78, 300-307.	1.2	19
108	A "Clearer―View of Pancreatic Pathology: A Review of Tissue Clearing and Advanced Microscopy Techniques. Advances in Anatomic Pathology, 2019, 26, 31-39.	2.4	19

#	Article	IF	CITATIONS
109	Genetic Syndromes with Pancreatic Manifestations. Surgical Pathology Clinics, 2016, 9, 705-715.	0.7	18
110	PBRM1 loss is a late event during the development of cholangiocarcinoma. Histopathology, 2017, 71, 375-382.	1.6	18
111	The Almost-Normal Liver Biopsy. American Journal of Surgical Pathology, 2017, 41, 1247-1253.	2.1	18
112	Methylation-based Cell-free DNA Signature for Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 1267-1273.	0.5	18
113	Quantification of nucleic acid quality in postmortem tissues from a cancer research autopsy program. Oncotarget, 2016, 7, 66906-66921.	0.8	17
114	Threeâ€dimensional analysis of extrahepatic cholangiocarcinoma and tumor budding. Journal of Pathology, 2020, 251, 400-410.	2.1	16
115	Epithelial-mesenchymal transition in undifferentiated carcinoma of the pancreas with and without osteoclast-like giant cells. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 319-326.	1.4	16
116	Genomic Landscapes of Pancreatic Neoplasia. Journal of Pathology and Translational Medicine, 2015, 49, 13-22.	0.4	16
117	Clinical and Radiographic Gastrointestinal Abnormalities in McCune-Albright Syndrome. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4293-4303.	1.8	15
118	The Impact of Clinical and Pathological Features on Intraductal Papillary Mucinous Neoplasm Recurrence After Surgical Resection. Annals of Surgery, 2022, 275, 1165-1174.	2.1	15
119	Organoids in cancer research: a review for pathologistâ€scientists. Journal of Pathology, 2021, 254, 395-404.	2.1	14
120	Molecular Genetics of Pancreatic Neoplasms. Surgical Pathology Clinics, 2016, 9, 685-703.	0.7	12
121	Telomere alterations in neurofibromatosis type 1-associated solid tumors. Acta Neuropathologica Communications, 2019, 7, 139.	2.4	12
122	Downregulation of 5â€hydroxymethylcytosine is an early event in pancreatic tumorigenesis. Journal of Pathology, 2021, 254, 279-288.	2.1	12
123	The inverted appendix – a potentially problematic diagnosis: clinicopathologic analysis of 21 cases. Histopathology, 2019, 74, 853-860.	1.6	11
124	Perineural Invasion is a Strong Prognostic Moderator in Ampulla of Vater Carcinoma. Pancreas, 2019, 48, 70-76.	0.5	11
125	Haplotype Counting for Sensitive Chimerism Testing. Journal of Molecular Diagnostics, 2017, 19, 427-436.	1.2	10
126	Desmin and CD31 immunolabeling for detecting venous invasion of the pancreatobiliary tract cancers. PLoS ONE, 2020, 15, e0242571.	1.1	10

#	Article	IF	CITATIONS
127	A robust nonlinear tissue-component discrimination method for computational pathology. Laboratory Investigation, 2016, 96, 450-458.	1.7	9
128	Intraductal pancreatic cancer is less responsive than cancer in the stroma to neoadjuvant chemotherapy. Modern Pathology, 2020, 33, 2026-2034.	2.9	9
129	Blood Type as a Predictor of High-Grade Dysplasia and Associated Malignancy in Patients with Intraductal Papillary Mucinous Neoplasms. Journal of Gastrointestinal Surgery, 2019, 23, 477-483.	0.9	8
130	Prospective identification of Helicobacter pylori in routine gastric biopsies without reflex ancillary stains is cost-efficient for our health care system. Human Pathology, 2016, 58, 90-96.	1.1	7
131	Pancreatic cancer pathology viewed in the light of evolution. Cancer and Metastasis Reviews, 2021, 40, 661-674.	2.7	7
132	Pancreatic Cancer Genomes: Toward Molecular Subtyping and Novel Approaches to Diagnosis and Therapy. Molecular Diagnosis and Therapy, 2013, 17, 287-297.	1.6	6
133	Pathology of intraductal papillary mucinous neoplasms. Langenbeck's Archives of Surgery, 2021, 406, 2643-2655.	0.8	6
134	Opposing roles of the immune system in tumors. Science, 2021, 373, 1306-1307.	6.0	6
135	Very long-term survival in pancreatic cancer. Aging, 2015, 7, 360-361.	1.4	6
136	Functional CDKN2A assay identifies frequent deleterious alleles misclassified as variants of uncertain significance. ELife, 2022, 11, .	2.8	6
137	Folate Receptor Alpha: A New Tool in the Diagnosis and Treatment of Lung Cancer. Oncotarget, 2012, 3, 668-669.	0.8	5
138	Metastatic pancreatic adenocarcinoma associated with chronic calcific pancreatitis and a heterozygous SPINK1 N34S mutation. Pancreatology, 2016, 16, 869-872.	0.5	3
139	Generation and characterization of a cell line from an intraductal tubulopapillary neoplasm of the pancreas. Laboratory Investigation, 2020, 100, 1003-1013.	1.7	3
140	Biphenotypic Differentiation of Pancreatic Cancer in 3-Dimensional Culture. Pancreas, 2019, 48, 1225-1231.	0.5	2
141	Well-differentiated Pancreatic Neuroendocrine Tumor in a Patient With Familial Atypical Multiple Mole Melanoma Syndrome (FAMMM). American Journal of Surgical Pathology, 2019, 43, 1297-1302.	2.1	2
142	Circulating tumor DNA (ctDNA) as a prognostic marker for recurrence in resected pancreas cancer Journal of Clinical Oncology, 2015, 33, 11025-11025.	0.8	2
143	The Changing Landscape of Pancreatic Pathology. Surgical Pathology Clinics, 2016, 9, xiii.	0.7	1
144	Familial Adenomatous Polyposis–associated Traditional Serrated Adenoma of the Small Intestine. American Journal of Surgical Pathology, 2021, Publish Ahead of Print, 1626-1632.	2.1	1

#	Article	IF	CITATIONS
145	Insights into the origins of pancreatic cancer. Nature, 2021, 597, 641-642.	13.7	1
146	Prophylactic appendiceal retrograde intraluminal stent placement (PARIS). VideoGIE, 2021, 6, 552-554.	0.3	1
147	Is successful resection following neoadjuvant radiation therapy for borderline resectable pancreatic cancer dependent on improved tumor-vessel relationships?. Journal of Clinical Oncology, 2013, 31, 4057-4057.	0.8	1
148	Prognostic factors for achieving resection following neoadjuvant radiation therapy for borderline resectable pancreatic adenocarcinoma Journal of Clinical Oncology, 2013, 31, 285-285.	0.8	0
149	Multimodality imaging and radiological-pathological analysis of ethiodized oil: Imaging biomarker of tumor necrosis after TACE?. Journal of Clinical Oncology, 2015, 33, TPS503-TPS503.	0.8	Ο
150	Some Morphology Frontiers of Dysplasia in the Tubular Gastrointestinal Tract. American Journal of Surgical Pathology, 2020, Publish Ahead of Print, e1-e14.	2.1	0
151	Abstract PO-111: A human single-cell RNA sequencing atlas of pancreatic ductal adenocarcinoma enables harmonized cell type calling and comprehensive analyses of potential intercellular signaling. , 2021, , .		Ο
152	Abstract PO-121: Investigating the role of human cancer-associated fibroblasts in pancreatic cancer invasion using patient-derived PDAC organoids. , 2021, , .		0
153	Cancerization of ducts in hilar cholangiocarcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, , .	1.4	0