Daryl P Shanley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8663352/publications.pdf

Version: 2024-02-01

		218592	206029
52	2,393	26	48
papers	citations	h-index	g-index
5 4	5 4	- 4	2725
54	54	54	3735
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Systems modelling predicts chronic inflammation and genomic instability prevent effective mitochondrial regulation during biological ageing. Experimental Gerontology, 2022, 166, 111889.	1.2	8
2	Modelling the role of redox-related mechanisms in musculoskeletal ageing. Free Radical Biology and Medicine, 2019, 132, 11-18.	1.3	5
3	Predominant Asymmetrical Stem Cell Fate Outcome Limits the Rate of Niche Succession in Human Colonic Crypts. EBioMedicine, 2018, 31, 166-173.	2.7	19
4	â€~Molecular habituation' as a potential mechanism of gradual homeostatic loss with age. Mechanisms of Ageing and Development, 2018, 169, 53-62.	2.2	9
5	PyCoTools: a Python toolbox for COPASI. Bioinformatics, 2018, 34, 3702-3710.	1.8	18
6	Growing more positive with age: The relationship between reproduction and survival in aging flies. Experimental Gerontology, 2017, 90, 34-42.	1.2	4
7	Cross platform analysis of transcriptomic data identifies ageing has distinct and opposite effects on tendon in males and females. Scientific Reports, 2017, 7, 14443.	1.6	20
8	Pervasive gene expression responses to a fluctuating diet in <i>Drosophila melanogaster</i> : The importance of measuring multiple traits to decouple potential mediators of life span and reproduction. Evolution; International Journal of Organic Evolution, 2017, 71, 2572-2583.	1.1	10
9	Explaining sex differences in lifespan in terms of optimal energy allocation in the baboon. Evolution; International Journal of Organic Evolution, 2017, 71, 2280-2297.	1.1	5
10	Systems modelling ageing: from single senescent cells to simple multi-cellular models. Essays in Biochemistry, 2017, 61, 369-377.	2.1	12
11	A systems study reveals concurrent activation of AMPK and mTOR by amino acids. Nature Communications, 2016, 7, 13254.	5. 8	113
12	Modeling and gene knockdown to assess the contribution of nonsense-mediated decay, premature termination, and selenocysteine insertion to the selenoprotein hierarchy. Rna, 2016, 22, 1076-1084.	1.6	11
13	Increasing extracellular H2O2 produces a bi-phasic response in intracellular H2O2, with peroxiredoxin hyperoxidation only triggered once the cellular H2O2-buffering capacity is overwhelmed. Free Radical Biology and Medicine, 2016, 95, 333-348.	1.3	38
14	Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p. Stem Cells, 2015, 33, 3266-3280.	1.4	72
15	A dynamic framework for the study of optimal birth intervals reveals the importance of sibling competition and mortality risks. Journal of Evolutionary Biology, 2015, 28, 885-895.	0.8	O
16	Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21-Mediated Early Senescence Signalling. PLoS Computational Biology, 2015, 11, e1004246.	1,5	39
17	Dynamic Modelling of Pathways to Cellular Senescence Reveals Strategies for Targeted Interventions. PLoS Computational Biology, 2014, 10, e1003728.	1.5	121
18	Detecting translational regulation by change point analysis of ribosome profiling data sets. Rna, 2014, 20, 1507-1518.	1.6	36

#	Article	IF	Citations
19	The plastic fly: the effect of sustained fluctuations in adult food supply on lifeâ€history traits. Journal of Evolutionary Biology, 2014, 27, 2322-2333.	0.8	6
20	Computational modelling of the regulation of Insulin signalling by oxidative stress. BMC Systems Biology, 2013, 7, 41.	3.0	31
21	The Predictive Adaptive Response: Modeling the Life-History Evolution of the Butterfly Bicyclus anynana in Seasonal Environments. American Naturalist, 2013, 181, E28-E42.	1.0	45
22	Systems Modelling of NHEJ Reveals the Importance of Redox Regulation of Ku70/80 in the Dynamics of DNA Damage Foci. PLoS ONE, 2013, 8, e55190.	1.1	19
23	Response to Comment on "A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation― Building a Model of the mTOR Signaling Network with a Potentially Faulty Tool. Science Signaling, 2012, 5, .	1.6	1
24	Glutathione peroxidase 4 has a major role in protecting mitochondria from oxidative damage and maintaining oxidative phosphorylation complexes in gut epithelial cells. Free Radical Biology and Medicine, 2012, 53, 488-497.	1.3	83
25	A Stochastic Step Model of Replicative Senescence Explains ROS Production Rate in Ageing Cell Populations. PLoS ONE, 2012, 7, e32117.	1.1	50
26	A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation. Science Signaling, 2012, 5, ra25.	1.6	120
27	A modelling–experimental approach reveals insulin receptor substrate (IRS)â€dependent regulation of adenosine monosphosphateâ€dependent kinase (AMPK) by insulin. FEBS Journal, 2012, 279, 3314-3328.	2.2	45
28	EvolutionEvolution of Asymmetric Damagedamage Segregationsegregation : A Modelling Approach. Sub-Cellular Biochemistry, 2011, 57, 315-330.	1.0	10
29	The connections between general and reproductive senescence and the evolutionary basis of menopause. Annals of the New York Academy of Sciences, 2010, 1204, 21-29.	1.8	45
30	Modelling the Response of FOXO Transcription Factors to Multiple Post-Translational Modifications Made by Ageing-Related Signalling Pathways. PLoS ONE, 2010, 5, e11092.	1.1	32
31	Evolution of the menopause: life histories and mechanisms. Menopause International, 2009, 15, 26-30.	1.6	7
32	Metabolic evolution suggests an explanation for the weakness of antioxidant defences in beta-cells. Mechanisms of Ageing and Development, 2009, 130, 216-221.	2.2	28
33	An evolutionary perspective on the mechanisms of immunosenescence. Trends in Immunology, 2009, 30, 374-381.	2.9	240
34	On the Surprising Weakness of Pancreatic Beta-Cell Antioxidant Defences: An Evolutionary Perspective., 2009,, 109-125.		3
35	Testing evolutionary theories of menopause. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2943-2949.	1.2	94
36	Modelling the checkpoint response to telomere uncapping in budding yeast. Journal of the Royal Society Interface, 2007, 4, 73-90.	1.5	6

#	Article	IF	Citations
37	BASIS: an internet resource for network modelling. Journal of Integrative Bioinformatics, 2006, 3, 37-48.	1.0	1
38	Caloric restriction does not enhance longevity in all species and is unlikely to do so in humans. Biogerontology, 2006, 7, 165-168.	2.0	81
39	Tools for the SBML Community. Bioinformatics, 2006, 22, 628-629.	1.8	41
40	Modelling the actions of chaperones and their role in ageing. Mechanisms of Ageing and Development, 2005, 126, 119-131.	2.2	68
41	Food restriction, evolution and ageing. Mechanisms of Ageing and Development, 2005, 126, 1011-1016.	2.2	127
42	Computer Modeling in the Study of Aging., 2005,, 334-357.		1
43	A mathematical model of ageing in yeast. Journal of Theoretical Biology, 2004, 229, 189-196.	0.8	39
44	Towards an e-biology of ageing: integrating theory and data. Nature Reviews Molecular Cell Biology, 2003, 4, 243-249.	16.1	86
45	The fitness of twin mothers: evidence from rural Gambia. Journal of Evolutionary Biology, 2001, 14, 433-443.	0.8	67
46	Evolution of the human menopause. BioEssays, 2001, 23, 282-287.	1,2	135
47	CALORIC RESTRICTION, LIFE-HISTORY EVOLUTION, AND BIOENERGETICS: RESPONSE TO MITTELDORF. Evolution; International Journal of Organic Evolution, 2001, 55, 1906-1906.	1.1	2
48	CALORIC RESTRICTION, LIFE-HISTORY EVOLUTION, AND BIOENERGETICS: RESPONSE TO MITTELDORF. Evolution; International Journal of Organic Evolution, 2001, 55, 1906.	1.1	0
49	Evolution of the human menopause. BioEssays, 2001, 23, 282-287.	1.2	1
50	Evolution, stress, and longevity. Journal of Anatomy, 2000, 197, 587-590.	0.9	74
51	CALORIE RESTRICTION AND AGING: A LIFE-HISTORY ANALYSIS. Evolution; International Journal of Organic Evolution, 2000, 54, 740-750.	1.1	259
52	Caloric restriction, hormesis and life history plasticity. Human and Experimental Toxicology, 2000, 19, 338-339.	1.1	6