Liping Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8662952/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physical mechanisms behind the wet adhesion: From amphibian toe-pad to biomimetics. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111531.	5.0	14
2	Uniform Inner Surface Treatment of Tubes Using a Flexible Atmospheric Pressure Microplasma Jet Source*. , 2021, , .		0
3	Maskless atmospheric pressure PECVD of SiO x films on both planar and nonplanar surfaces using a flexible atmospheric microplasma generation device. Plasma Processes and Polymers, 2020, 17, 1900142.	3.0	8
4	Homogeneous surface hydrophilization on the inner walls of polymer tubes using a flexible atmospheric cold microplasma jet. Plasma Processes and Polymers, 2020, 17, 2000056.	3.0	7
5	Experimental investigation of the effect of typical surface texture patterns on mechanical seal performance. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	8
6	Microplasma direct writing of a copper thin film in the atmospheric condition with a novel copper powder electrode. Plasma Processes and Polymers, 2020, 17, 2000034.	3.0	6
7	Comparative research on gas seal performance textured with microgrooves and microdimples. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	5
8	Closure to Discussion of "A Multi-Objective Optimization Approach on Spiral Grooves for Gas Mechanical Seals―(Wang, X., Shi, L., Huang, W., and Wang, X., 2018, ASME J. Tribol., 140(4), p. 041701). Journal of Tribology, 2019, 141, .	1.9	1
9	Multi-objective optimization on dimple shapes for gas face seals. Tribology International, 2018, 123, 216-223.	5.9	40
10	A Multi-Objective Optimization Approach on Spiral Grooves for Gas Mechanical Seals. Journal of Tribology, 2018, 140, .	1.9	12
11	Surface texturing on SiC by multiphase jet machining with microdiamond abrasives. Materials and Manufacturing Processes, 2018, 33, 1415-1421.	4.7	18
12	Comparison of the Load-Carrying Performance of Mechanical Gas Seals Textured With Microgrooves and Microdimples. Journal of Tribology, 2016, 138, .	1.9	32
13	Effect of electrode configurations on the characteristics of the ring–ring typed atmospheric plasma jet and its modification on polymer film. Plasma Processes and Polymers, 0, , e2100139.	3.0	3