Jie Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8662689/publications.pdf

Version: 2024-02-01

933447 940533 28 312 10 16 h-index citations g-index papers 29 29 29 334 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Multi-directional forging of large-scale Mg-9Gd-3Y-2Zn-0.5Zr alloy guided by 3D processing maps and finite element analysis. International Journal of Advanced Manufacturing Technology, 2022, 120, 5985-5996.	3.0	4
2	A New Dynamic Recrystallization Kinetics Model of Cast-Homogenized Magnesium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 316-331.	2.2	4
3	The role of dislocation-solute interactions on the creep behaviour of binary Mg–RE alloys. Scientific Reports, 2021, 11, 2860.	3.3	22
4	A New Constitutive Model for Thermal Deformation of Magnesium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 497-512.	2.2	14
5	3D processing maps of cast Mg-8Gd-3Y alloy at high strain rates and their application in plane strain forging. International Journal of Advanced Manufacturing Technology, 2020, 106, 133-141.	3.0	8
6	Microstructure and Mechanical Properties of Mg–3Al–Zn Magnesium Alloy Sheet by Hot Shear Spinning. Acta Metallurgica Sinica (English Letters), 2020, 33, 1226-1234.	2.9	5
7	Optimization of hot backward extrusion process parameters for flat bottom cylindrical parts of Mg-8Gd-3Y alloy based on 3D processing maps. International Journal of Advanced Manufacturing Technology, 2020, 108, 2149-2164.	3.0	7
8	The Effect of Casting Speed on Microstructure, Microsegregation, and Mechanical Properties of High-Strength Mg-Nd-Zn-Zr Alloy. Journal of Materials Engineering and Performance, 2019, 28, 1753-1761.	2.5	6
9	In Situ Electron Backscatter Diffraction Analysis for Microstructure Evolution and Deformation Models of Mg–Ce Alloy During Uniaxial Loading. Acta Metallurgica Sinica (English Letters), 2019, 32, 263-268.	2.9	16
10	Microstructure Characteristic and Mechanical Properties of High-Strength Mg-Nd-Zn-Zr Alloy Seamless Tube Produced by Integrated Extrusion. Journal of Materials Engineering and Performance, 2018, 27, 794-802.	2.5	7
11	Wave Forces Exerted on a Submerged Horizontal Plate over an Uneven Bottom. Journal of Engineering Mechanics - ASCE, 2018, 144, .	2.9	10
12	Magnesium Alloy Matching Layer for High-Performance Transducer Applications. Sensors, 2018, 18, 4424.	3.8	13
13	Magnesium Alloy Matching Layer for PMN-PT Single Crystal Transducer Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 1865-1872.	3.0	8
14	High temperature tensile properties of laser-welded high-strength Mg-Gd-Y-Zr alloy in as-welded and heat-treated conditions. Welding in the World, Le Soudage Dans Le Monde, 2017, 61, 299-306.	2.5	5
15	Effect of Direct Chill Casting Process Parameters on the Microstructure and Macrosegregation of Mg-Al-Zn Ingot. Materials Transactions, 2017, 58, 1197-1202.	1.2	4
16	Characterization and investigation of the deformation behavior of porous magnesium scaffolds with entangled architectured pore channels. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 139-150.	3.1	20
17	Microstructure and Strengthening Mechanism of Fiber Laser-Welded High-Strength Mg-Gd-Y-Zr Alloy. Journal of Materials Engineering and Performance, 2016, 25, 4506-4513.	2.5	5
18	Mechanical degradation of porous titanium with entangled structure filled with biodegradable magnesium in Hanks' solution. Materials Science and Engineering C, 2015, 57, 349-354.	7.3	21

#	ARTICLE	IF	CITATION
19	Porous titanium with entangled structure filled with biodegradable magnesium for potential biomedical applications. Materials Science and Engineering C, 2015, 47, 142-149.	7.3	19
20	Microstructure and Mechanical Properties of Friction Stir-Welded Mg-2Nd-0.3Zn-0.4Zr Magnesium Alloy. Journal of Materials Engineering and Performance, 2014, 23, 4136-4142.	2.5	1
21	Effects of Heat Input on Microstructure and Mechanical Properties of Laser-Welded Mg-Rare Earth Alloy. Journal of Materials Engineering and Performance, 2013, 22, 64-70.	2.5	5
22	Directional Solidification and Microsegregation in a Magnesium-Aluminum-Calcium Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3239-3248.	2.2	36
23	Microstructure evolution of Mg-3%Al-1%Zn alloy tube during warm bending. Journal of Materials Science, 2012, 47, 3801-3807.	3.7	10
24	Investigations on laser welding of magnesium alloys. International Journal of Materials Research, 2012, 103, 1218-1222.	0.3	1
25	Fatigue behavior of hot-extruded Mg–10Gd–3Y magnesium alloy. Journal of Materials Research, 2010, 25, 773-783.	2.6	12
26	Smooth and notched fatigue performance of aging treated and shot peened ZK60 magnesium alloy. Journal of Materials Research, 2010, 25, 1375-1387.	2.6	4
27	Bending Mechanisms in AM30 Alloy Tube Using a Rotary Draw Bender. Materials and Manufacturing Processes, 2010, 25, 1359-1364.	4.7	11
28	Effect of Shot Peening on Surface Characteristics and Fatigue Properties of T5-Treated ZK60 Alloy. Materials Transactions, 2009, 50, 791-798.	1.2	34