Gregory Mahy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8662476/publications.pdf

Version: 2024-02-01

136950 144013 3,895 107 32 57 citations h-index g-index papers 114 114 114 5023 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Toward an oldâ€growth concept for grasslands, savannas, and woodlands. Frontiers in Ecology and the Environment, 2015, 13, 154-162.	4.0	349
2	Where Tree Planting and Forest Expansion are Bad for Biodiversity and Ecosystem Services. BioScience, 2015, 65, 1011-1018.	4.9	298
3	Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biological Reviews, 2019, 94, 590-609.	10.4	205
4	Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytologist, 2017, 213, 537-551.	7.3	190
5	Comment on "The global tree restoration potential― Science, 2019, 366, .	12.6	185
6	Tyranny of trees in grassy biomes. Science, 2015, 347, 484-485.	12.6	140
7	Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: Localization and composition in relation to salt stress. Journal of Plant Physiology, 2010, 167, 382-392.	3.5	105
8	Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50
9	Kosteletzkya virginica, an agroecoengineering halophytic species for alternative agricultural production in China's east coast: Ecological adaptation and benefits, seed yield, oil content, fatty acid and biodiesel properties. Ecological Engineering, 2008, 32, 320-328.	3.6	68
10	Hybridization and morphogenetic variation in the invasive alien <i>Fallopia</i> (Polygonaceae) complex in Belgium. American Journal of Botany, 2007, 94, 1900-1910.	1.7	65
11	Clinal differentiation during invasion: Senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia, 2009, 159, 305-315.	2.0	65
12	Hybridization and Sexual Reproduction in the Invasive Alien Fallopia (Polygonaceae) Complex in Belgium. Annals of Botany, 2007, 99, 193-203.	2.9	64
13	Plants sustain the terrestrial silicon cycle during ecosystem retrogression. Science, 2020, 369, 1245-1248.	12.6	57
14	Evolution of dispersal traits along an invasion route in the wind-dispersed Senecio inaequidens (Asteraceae). Oikos, 2010, 119, 1563-1570.	2.7	56
15	Plant species extinction debt in a temperate biodiversity hotspot: Community, species and functional traits approaches. Biological Conservation, 2011, 144, 1619-1629.	4.1	53
16	Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecology and Evolution, 2010, 143, 5-18.	0.7	49
17	Forest refugia revisited: nSSRs and cpDNA sequences support historical isolation in a wide-spread African tree with high colonization capacity, Milicia excelsa (Moraceae). Molecular Ecology, 2010, 19, 4462-4477.	3.9	47
18	Rapid restoration of a species-rich ecosystem assessed from soil and vegetation indicators: The case of calcareous grasslands restored from forest stands. Ecological Indicators, 2011, 11, 724-733.	6.3	47

#	Article	IF	CITATIONS
19	Plant functional traits as a promising tool for the ecological restoration of degraded tropical metal-rich habitats and revegetation of metal-rich bare soils: A case study in copper vegetation of Katanga, DRC. Ecological Engineering, 2015, 82, 214-221.	3.6	46
20	Vegetation and seed bank in a calcareous grassland restored from a <i>Pinus</i> forest. Applied Vegetation Science, 2005, 8, 167-174.	1.9	45
21	Spatial genetic structure in <i>Milicia excelsa</i> (Moraceae) indicates extensive gene dispersal in a lowâ€density windâ€pollinated tropical tree. Molecular Ecology, 2009, 18, 4398-4408.	3.9	45
22	Vegetation and seed bank in a calcareous grassland restored from a Pinus forest. Applied Vegetation Science, 2005, 8, 167.	1.9	44
23	Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils. Plant and Soil, 2014, 379, 275-287.	3.7	44
24	Patterns of allozymic variation within Calluna vulgaris populations at seed bank and adult stages. Heredity, 1999, 82, 432-440.	2.6	43
25	Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant and Soil, 2009, 317, 201-212.	3.7	43
26	Colonization Credit in Restored Wet Heathlands. Restoration Ecology, 2010, 18, 645-655.	2.9	43
27	Floristic evidence for alternative biome states in tropical Africa. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28183-28190.	7.1	41
28	Genetic structure of quinoa (Chenopodium quinoa Willd.) from the Bolivian altiplano as revealed by RAPD markers. Genetic Resources and Crop Evolution, 2007, 54, 897-905.	1.6	40
29	Taxa distribution and RAPD markers indicate different origin and regional differentiation of hybrids in the invasive Fallopia complex in central-western Europe. Plant Biology, 2010, 12, 215-223.	3.8	37
30	May Rare Metallophytes Benefit from Disturbed Soils Following Mining Activity? The Case of the <i>Crepidorhopalon tenuis</i> in Katanga (D. R. Congo). Restoration Ecology, 2011, 19, 333-343.	2.9	35
31	Perception and Understanding of Invasive Alien Species Issues by Nature Conservation and Horticulture Professionals in Belgium. Environmental Management, 2011, 47, 425-442.	2.7	35
32	Can Land Managers Control Japanese Knotweed? Lessons from Control Tests in Belgium. Environmental Management, 2012, 50, 1089-1097.	2.7	35
33	Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environmental and Experimental Botany, 2012, 84, 11-16.	4.2	34
34	Investigating the Vegetation–Soil Relationships on the Copper–Cobalt Rock Outcrops of Katanga (D. R.) Tj E	ETQ <u>q</u> 0 0 0	rgBT /Overlo
35	Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecological Engineering, 2015, 82, 81-90.	3.6	34
36	Early Inbreeding Depression and Pollen Competition inCalluna vulgaris(L.) Hull Annals of Botany, 1999, 83, 697-704.	2.9	33

#	Article	IF	CITATIONS
37	Allozyme diversity and genetic structure in Southâ€Western populations of heather, Calluna vulgaris. New Phytologist, 1997, 137, 325-334.	7.3	32
38	Landscape dynamics and habitat selection by the alien invasive Fallopia (Polygonaceae) in Belgium. Biodiversity and Conservation, 2008, 17, 2357-2370.	2.6	32
39	Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South D. R. Congo. Environmental Science and Pollution Research, 2016, 23, 13693-13705.	5.3	31
40	Increasing plant functional diversity is not the key for supporting pollinators in wildflower strips. Agriculture, Ecosystems and Environment, 2017, 249, 144-155.	5.3	31
41	The generalist pollination system and reproductive success of <i>Calluna vulgaris </i> in the Upper Ardenne. Canadian Journal of Botany, 1998, 76, 1843-1851.	1.1	31
42	Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant and Soil, 2013, 373, 455-469.	3.7	30
43	Rapid Plant Invasion in Distinct Climates Involves Different Sources of Phenotypic Variation. PLoS ONE, 2013, 8, e55627.	2.5	30
44	Spider communities as evaluation tools for wet heathland restoration. Ecological Indicators, 2010, 10, 773-780.	6.3	29
45	Bimodal pollination system in rare endemic Oncocyclus irises (Iridaceae) of Lebanon. Canadian Journal of Botany, 2006, 84, 1327-1338.	1.1	28
46	Testing coexistence of extinction debt and colonization credit in fragmented calcareous grasslands with complex historical dynamics. Landscape Ecology, 2011, 26, 823-836.	4.2	28
47	A shift from phenol to silicaâ€based leaf defences during longâ€term soil and ecosystem development. Ecology Letters, 2021, 24, 984-995.	6.4	27
48	Phenological patterns in a natural population of a tropical timber tree species, <i>Milicia excelsa</i> (Moraceae): Evidence of isolation by time and its interaction with feeding strategies of dispersers. American Journal of Botany, 2012, 99, 1453-1463.	1.7	26
49	Implication of plant-soil relationships for conservation and restoration of copper-cobalt ecosystems. Plant and Soil, 2016, 403, 153-165.	3.7	26
50	An explicit test for the contribution of environmental maternal effects to rapid clinal differentiation in an invasive plant. Journal of Evolutionary Biology, 2009, 22, 917-926.	1.7	25
51	Response of plant functional traits during the restoration of calcareous grasslands from forest stands. Ecological Indicators, 2015, 48, 408-416.	6.3	25
52	Fitness and genetic variation of <i>Viola calaminaria</i> , an endemic metallophyte: implications of population structure and history. Plant Biology, 2008, 10, 684-693.	3.8	24
53	Speciation slowing down in widespread and long-living tree taxa: insights from the tropical timber tree genus Milicia (Moraceae). Heredity, 2014, 113, 74-85.	2.6	24
54	Historical landscape structure affects plant species richness in wet heathlands with complex landscape dynamics. Landscape and Urban Planning, 2010, 98, 92-98.	7. 5	23

#	Article	IF	CITATIONS
55	Comparison of translocation methods to conserve metallophyte communities in the Southeastern D.R. Congo. Environmental Science and Pollution Research, 2016, 23, 13681-13692.	5.3	22
56	Management of Grassland-like Wildflower Strips Sown on Nutrient-rich Arable Soils: The Role of Grass Density and Mowing Regime. Environmental Management, 2019, 63, 647-657.	2.7	22
57	The generalist pollination system and reproductive success of Calluna vulgaris in the Upper Ardenne. Canadian Journal of Botany, 1998, 76, 1843-1851.	1.1	21
58	Allozyme variation and genetic structure of Calluna vulgaris (heather) populations in Scotland: the effect of postglacial recolonization. Heredity, 1999, 82, 654-660.	2.6	20
59	Withinâ€population genetic structure and clonal diversity of a threatened endemic metallophyte, <i>Viola calaminaria</i> (Violaceae). American Journal of Botany, 2007, 94, 887-895.	1.7	20
60	Community variation in plant traits along copper and cobalt gradients. Journal of Vegetation Science, 2016, 27, 854-864.	2.2	20
61	Small-scale diversity of plant communities and distribution of species niches on a copper rock outcrop in Upper Katanga, D.R.Congo. Plant Ecology and Evolution, 2013, 146, 173-182.	0.7	18
62	Effects of seed traits variation on seedling performance of the invasive weed, Ambrosia artemisiifolia L Acta Oecologica, 2016, 71, 39-46.	1.1	18
63	A sharp floristic discontinuity revealed by the biogeographic regionalization of African savannas. Journal of Biogeography, 2019, 46, 454-465.	3.0	17
64	Comparative Chemical and Molecular Variability of Cananga odorata (Lam.) Hook.f. & Thomson forma genuina (Ylang-Ylang) in the Western Indian Ocean Islands: Implication for Valorization. Chemistry and Biodiversity, 2012, 9, 1389-1402.	2.1	15
65	Ecology and Hybridization Potential of Two Sympatric Metallophytes, the Narrow Endemic <i><scp>C</scp>repidorhopalon perennis</i> (<scp>L</scp> inderniaceae) and its More Widespread Congener <i><scp>C</scp>. tenuis</i> . Biotropica, 2012, 44, 454-462.	1.6	15
66	Variation of growth and functional traits of invasive knotweeds (Fallopia spp.) in Belgium. Plant Ecology, 2012, 213, 419-430.	1.6	15
67	Germination capacity and seed storage behaviour of threatened metallophytes from the Katanga copper belt (D.R.Congo): implications for ex situ conservation. Plant Ecology and Evolution, 2013, 146, 183-192.	0.7	15
68	Interspecific trait integration increases with environmental harshness: A case study along a metal toxicity gradient. Functional Ecology, 2020, 34, 1428-1437.	3.6	15
69	Why some species cannot colonise restored habitats? The effects of seed and microsite availability. Journal for Nature Conservation, 2013, 21, 189-197.	1.8	14
70	The voluntary <scp>C</scp> ode of conduct on invasive alien plants in <scp>B</scp> elgium: results and lessons learned from the <scp>A</scp> lter <scp>IAS LIFE</scp> + project. EPPO Bulletin, 2014, 44, 212-222.	0.8	13
71	Mating system of <i>Calluna vulgaris</i> : self-sterility and outcrossing estimations. Canadian Journal of Botany, 1998, 76, 37-42.	1.1	13
72	Developing biodiversity indicators on a stakeholders' opinions basis: the gypsum industry Key Performance Indicators framework. Environmental Science and Pollution Research, 2016, 23, 13661-13671.	5.3	12

#	Article	IF	Citations
73	Loss of pollinator specialization revealed by historical opportunistic data: Insights from network-based analysis. PLoS ONE, 2020, 15, e0235890.	2.5	12
74	PERSPECTIVE: Linking concepts in the ecology and evolution of invasive plants: network analysis shows what has been most studied and identifies knowledge gaps. Evolutionary Applications, 2010, 3, 193-202.	3.1	11
75	Patterns of hybridization and hybrid survival in the invasive alien Fallopia complex (Polygonaceae). Plant Ecology and Evolution, 2011, 144, 12-18.	0.7	11
76	Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biological Invasions, 2021, 23, 1765-1779.	2.4	11
77	The influence of ecological infrastructures adjacent to crops on their carabid assemblages in intensive agroecosystems. PeerJ, 2020, 8, e8094.	2.0	11
78	Colonisation credit in recent wet heathland butterfly communities. Insect Conservation and Diversity, 2010, 3, 83-91.	3.0	10
79	Specialized edaphic niches of threatened copper endemic plant species in the D.R. Congo: implications for ex situ conservation. Plant and Soil, 2017, 413, 261-273.	3.7	10
80	Towards a population approach for evaluating grassland restoration—a systematic review. Restoration Ecology, 2018, 26, 227-234.	2.9	10
81	Arboreta reveal the invasive potential of several conifer species in the temperate forests of western Europe. NeoBiota, 0, 64, 23-42.	1.0	10
82	Molecular and morphological variation of rare endemic oncocyclus irises (Iridaceae) of Lebanon. Botanical Journal of the Linnean Society, 2009, 159, 123-135.	1.6	9
83	Mobility of copper and cobalt in metalliferous ecosystems: Results of a lysimeter study in the Lubumbashi Region (Democratic Republic of Congo). Journal of Geochemical Exploration, 2019, 196, 208-218.	3.2	9
84	Comparison of mining spoils to determine the best substrate for rehabilitating limestone quarries by favoring native grassland species over invasive plants. Ecological Engineering, 2019, 127, 510-518.	3.6	9
85	Plant community assembly along a natural metal gradient in central Africa: Functional and phylogenetic approach. Journal of Vegetation Science, 2020, 31, 151-161.	2.2	9
86	Mating system of Calluna vulgaris: self-sterility and outcrossing estimations. Canadian Journal of Botany, 1998, 76, 37-42.	1.1	7
87	Decline of endemic Oncocyclus irises (Iridaceae) of Lebanon: survey and conservation needs. Oryx, 2009, 43, 91.	1.0	7
88	Edaphic niches of metallophytes from southeastern Democratic Republic of Congo: Implications for post-mining restoration. Journal for Nature Conservation, 2016, 33, 18-24.	1.8	7
89	Performance variation of common ragweed (Ambrosia artemisiifolia L.) across invasion levels in Western Europe. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 220, 134-141.	1.2	7
90	Naturally recruited herbaceous vegetation in abandoned Belgian limestone quarries: towards habitats of conservation interest analogues?. Folia Geobotanica, 2018, 53, 147-158.	0.9	7

#	Article	IF	Citations
91	Diaspore heteromorphism in the invasive Bromus tectorum L. (Poaceae): Sterile florets increase dispersal propensity and distance. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 224, 7-13.	1.2	6
92	Specialist plant species harbour higher reproductive performances in recently restored calcareous grasslands than in reference habitats. Plant Ecology and Evolution, 2015, 148, 181-190.	0.7	5
93	How Are Landscapes under Agroecological Transition Perceived and Appreciated? A Belgian Case Study. Sustainability, 2020, 12, 2480.	3.2	5
94	Conservation of an endemic metallophyte species: Effect of population history and vegetative density on the reproductive success of Viola calaminaria. Journal for Nature Conservation, 2011, 19, 72-78.	1.8	4
95	Gestion de <i>Crassula helmsii</i> en Belgique plus difficile qu'il n'y paraît?. EPPO Bulletin, 2011, 41, 226-231.	0.8	4
96	Using phytostabilisation to conserve threatened endemic species in southeastern Democratic Republic of the Congo. Ecological Research, 2018, 33, 789-798.	1.5	4
97	A framework to identify constraints to post-extinction recovery of plant species—Application to the case of Bromus bromoideus. Journal for Nature Conservation, 2020, 54, 125802.	1.8	4
98	Topsoil translocation in extensively managed arable field margins promotes plant species richness and threatened arable plant species. Journal of Environmental Management, 2020, 260, 110126.	7.8	4
99	Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences. Biogeochemistry, 2021, 156, 335-350.	3.5	4
100	Seed desiccation-tolerance is a common feature of threatened taxa in metalliferous tropical grasslands from southeastern DR Congo. Journal for Nature Conservation, 2020, 56, 125842.	1.8	4
101	Ecological niche distribution along soil toxicity gradients: Bridging theoretical expectations and metallophyte conservation. Ecological Modelling, 2020, 415, 108861.	2.5	3
102	Vegetative Regeneration Capacities of Five Ornamental Plant Invaders After Shredding. Environmental Management, 2015, 55, 423-430.	2.7	2
103	Functional traits of a broad-niched metallophyte along a toxicity gradient: disentangling intra and inter-population variation. Environmental and Experimental Botany, 2018, 156, 240-247.	4.2	2
104	Conservation and Management of a Threatened Traditional Agroresource, Ylang‥lang, in the Indian Ocean Islands. Crop Science, 2012, 52, 2606-2618.	1.8	1
105	The success of rock translocation for populations of the chasmophytic Aeollanthus saxatilis (Lamiaceae). Journal for Nature Conservation, 2020, 53, 125777.	1.8	0
106	EFFECTIVENESS OF GREEN ROOFS IN STRENGTHENING ECOLOGICAL NETWORK. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLVI-4/W1-2021, 51-54.	0.2	0
107	Drought stress inducing intraspecific variability in Potentilla tabernaemontani (Rosaceae), a calcareous grassland species. Plant Ecology and Evolution, 2018, 151, 153-158.	0.7	0