
Fernando Carceller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8662234/publications.pdf Version: 2024-02-01

FERNANDO CARCELLER

#	Article	IF	CITATIONS
1	Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discovery, 2020, 10, 942-963.	7.7	157
2	A tailored molecular profiling programme for children with cancer to identify clinically actionable genetic alterations. European Journal of Cancer, 2019, 121, 224-235.	1.3	44
3	Medulloblastoma in children and adolescents: a systematic review of contemporary phase I and II clinical trials and biology update. Cancer Medicine, 2017, 6, 2606-2624.	1.3	42
4	Repeatability of derived parameters from histograms following non-Gaussian diffusion modelling of diffusion-weighted imaging in a paediatric oncological cohort. European Radiology, 2017, 27, 345-353.	2.3	40
5	Pseudoprogression in children, adolescents and young adults with non-brainstem high grade glioma and diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2016, 129, 109-121.	1.4	30
6	A case series of Diffuse Glioneuronal Tumours with Oligodendrogliomaâ€like features and Nuclear Clusters (DGONC). Neuropathology and Applied Neurobiology, 2021, 47, 464-467.	1.8	27
7	Droplet digital PCR-based detection of circulating tumor DNA from pediatric high grade and diffuse midline glioma patients. Neuro-Oncology Advances, 2021, 3, vdab013.	0.4	27
8	Repurposing Vandetanib plus Everolimus for the Treatment of <i>ACVR1</i> -Mutant Diffuse Intrinsic Pontine Glioma. Cancer Discovery, 2022, 12, 416-431.	7.7	25
9	Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study. European Radiology, 2015, 25, 2641-2650.	2.3	22
10	Prognostic factors of overall survival in children and adolescents enrolled in dose-finding trials in Europe: An Innovative Therapies for Children with Cancer study. European Journal of Cancer, 2016, 67, 130-140.	1.3	17
11	Challenging the indiscriminate use of temozolomide in pediatric highâ€grade gliomas: A review of past, current, and emerging therapies. Pediatric Blood and Cancer, 2020, 67, e28011.	0.8	17
12	Noninvasive MRI Native T1 Mapping Detects Response to <i>MYCN</i> -targeted Therapies in the Th- <i>MYCN</i> Model of Neuroblastoma. Cancer Research, 2020, 80, 3424-3435.	0.4	15
13	DIPG Harbors Alterations Targetable by MEK Inhibitors, with Acquired Resistance Mechanisms Overcome by Combinatorial Inhibition. Cancer Discovery, 2022, 12, 712-729.	7.7	15
14	MRI Imaging of the Hemodynamic Vasculature of Neuroblastoma Predicts Response to Antiangiogenic Treatment. Cancer Research, 2019, 79, 2978-2991.	0.4	13
15	Circulating tumour DNA sequencing to determine therapeutic response and identify tumour heterogeneity in patients with paediatric solid tumours. European Journal of Cancer, 2022, 162, 209-220.	1.3	12
16	Clinical research tools in pediatric oncology: challenges and opportunities. Cancer and Metastasis Reviews, 2020, 39, 149-160.	2.7	9
17	Post-radiotherapy apparent diffusion coefficient (ADC) in children and young adults with high-grade gliomas and diffuse intrinsic pontine gliomas. Pediatric Hematology and Oncology, 2019, 36, 103-112.	0.3	7
18	Response Assessment in Paediatric Phase I Trials According to RECIST Guidelines: Survival Outcomes, Patterns of Progression and Relevance of Changes in Tumour Measurements. Pediatric Blood and Cancer, 2016, 63, 1400-1406.	0.8	6

#	Article	IF	CITATIONS
19	High grade gliomas in young children: The South Thames Neuro-Oncology unit experience and recent advances in molecular biology and targeted therapies. Pediatric Hematology and Oncology, 2021, 38, 707-721.	0.3	6
20	PDTM-33. ATRX LOSS CONFERS ENHANCED SENSITIVITY TO COMBINED PARP INHIBITION AND RADIOTHERAPY IN PAEDIATRIC GLIOBLASTOMA MODELS. Neuro-Oncology, 2018, 20, vi210-vi211.	0.6	5
21	High-dose etoposide and cyclophosphamide in adults and children with primary refractory and multiply relapsed acute leukaemias: The Royal Marsden experience. Leukemia Research, 2019, 85, 106217.	0.4	5
22	Tumour-agnostic drugs in paediatric cancers. British Journal of Cancer, 2020, 122, 1425-1427.	2.9	4
23	Constitutional mismatch repair deficiency (CMMRD) presenting with high-grade glioma, multiple developmental venous anomalies and malformations of cortical development—a multidisciplinary/multicentre approach and neuroimaging clues to clinching the diagnosis. Child's Nervous System. 2020. 37. 2375-2379.	0.6	3
24	Long-term survivors of diffuse intrinsic pontine glioma (DIPG): myth or reality. Translational Cancer Research, 2019, 8, 343-343.	0.4	3
25	Feasibility and applicability of diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging in routine assessments of children with high-grade gliomas. Pediatric Blood and Cancer, 2017, 64, 279-283.	0.8	2
26	Outcome of children and adolescents with central nervous system tumors in phase I trials. Journal of Neuro-Oncology, 2018, 137, 83-92.	1.4	2
27	MODL-20. A BIOBANK OF ~100 PATIENT-DERIVED MODELS REPRESENTING BIOLOGICAL HETEROGENEITY AND DISTINCT THERAPEUTIC DEPENDENCIES IN PAEDIATRIC HIGH GRADE GLIOMA AND DIPG. Neuro-Oncology, 2020, 22, iii414-iii415.	0.6	2
28	HGG-23. DRUG SCREENING LINKED TO MOLECULAR PROFILING IDENTIFIES NOVEL DEPENDENCIES IN PATIENT-DERIVED PRIMARY CULTURES OF PAEDIATRIC HIGH GRADE GLIOMA AND DIPG. Neuro-Oncology, 2018, 20, i93-i94.	0.6	1
29	How to address challenges and opportunities in pediatric cancer drug development?. Expert Opinion on Drug Discovery, 2020, 15, 869-872.	2.5	1
30	Access to earlyâ€phase clinical trials for children with relapsed and refractory neuroblastoma: A multicentre international study. Pediatric Blood and Cancer, 2022, 69, e29551.	0.8	1
31	LGC-09. A Nationwide Service Evaluation of Safety, Radiologic and Visual Outcome Refining Bevacizumab-based Treatments in Children with Progressive Low-Grade Glioma. Neuro-Oncology, 2022, 24, i89-i89.	0.6	1
32	PDTM-34. TARGETING H3.3G34R/V RE-WIRING OF THE EPIGENOME IN PAEDIATRIC GLIOBLASTOMA OF CHILDREN AND YOUNG ADULTS. Neuro-Oncology, 2018, 20, vi211-vi211.	0.6	0
33	EAPH-05. MOLECULAR PROFILING AND IDENTIFICATION OF TARGETED THERAPIES FOR CHILDREN AND YOUNG ADULTS WITH PRIMARY CENTRAL NERVOUS SYSTEM TUMOURS IN THE UNITED KINGDOM. Neuro-Oncology, 2018, 20, i66-i66.	0.6	0
34	PDTM-31. DRUG SCREENING LINKED TO MOLECULAR PROFILING IDENTIFIES NOVEL DEPENDENCIES IN PATIENT-DERIVED PRIMARY CULTURES OF PAEDIATRIC HIGH GRADE GLIOMA AND DIPG. Neuro-Oncology, 2018, 20, vi210-vi210.	0.6	0
35	HGG-13. SURVIVAL OUTCOMES OF CHILDREN AND ADOLESCENTS WITH BI-THALAMIC GLIOMAS: THE SOUTH THAMES NEURO-ONCOLOGY UNIT EXPERIENCE. Neuro-Oncology, 2018, 20, i91-i91.	0.6	0
36	Radiological pseudoprogression postâ€radiotherapy in a child with pineal germ cell tumour. Pediatric Blood and Cancer, 2020, 67, e28407.	0.8	0

#	Article	IF	CITATIONS
37	EXTH-46. ARTIFICIAL INTELLIGENCE-BASED IDENTIFICATION OF COMBINED VANDETANIB AND EVEROLIMUS IN THE TREATMENT OF ACVR1-MUTANT DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2020, 22, ii97-ii97.	0.6	0
38	ls it possible to achieve longâ€ŧerm survival in relapsed intracranial nonâ€germinomatous germ cell tumours?. Pediatric Blood and Cancer, 2023, 70, .	0.8	0