
Adam H Price

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8662085/publications.pdf Version: 2024-02-01

ADAM H PRICE

#	Article	IF	CITATIONS
1	Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2011, 2, 467.	5.8	1,230
2	Root system architecture: opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 2007, 12, 474-481.	4.3	608
3	Variation in Rice Cadmium Related to Human Exposure. Environmental Science & Technology, 2013, 47, 5613-5618.	4.6	365
4	Linking droughtâ€resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. Journal of Experimental Botany, 2002, 53, 989-1004.	2.4	316
5	A Genome-Wide Meta-Analysis of Rice Blast Resistance Genes and Quantitative Trait Loci Provides New Insights into Partial and Complete Resistance. Molecular Plant-Microbe Interactions, 2008, 21, 859-868.	1.4	287
6	Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant and Soil, 2010, 329, 139-153.	1.8	275
7	Believe it or not, QTLs are accurate!. Trends in Plant Science, 2006, 11, 213-216.	4.3	236
8	Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
9	Rice Root Genetic Architecture: Meta-analysis from a Drought QTL Database. Rice, 2009, 2, 115-128.	1.7	222
10	Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. Journal of Experimental Botany, 2008, 59, 2267-2276.	2.4	210
11	Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytologist, 2011, 192, 87-98.	3.5	170
12	Identification of Low Inorganic and Total Grain Arsenic Rice Cultivars from Bangladesh. Environmental Science & Technology, 2009, 43, 6070-6075.	4.6	151
13	Environmental and Genetic Control of Arsenic Accumulation and Speciation in Rice Grain: Comparing a Range of Common Cultivars Grown in Contaminated Sites Across Bangladesh, China, and India. Environmental Science & Technology, 2009, 43, 8381-8386.	4.6	146
14	Variation in grain arsenic assessed in a diverse panel of rice (<i>Oryza sativa</i>) grown in multiple sites. New Phytologist, 2012, 193, 650-664.	3.5	126
15	Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crops Research, 2017, 205, 1-13.	2.3	123
16	Mapping QTLs associated with drought resistance in rice: Progress, problems and prospects. Plant Growth Regulation, 1999, 29, 123-133.	1.8	119

17	Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics, 2009, 10, 276.	1.2	115

18Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West2.0112Africa. Plant Molecular Biology, 2002, 48, 683-695.2.0112

ADAM H PRICE

#	Article	lF	CITATIONS
19	An arsenate tolerance gene on chromosome 6 of rice. New Phytologist, 2004, 163, 45-49.	3.5	85
20	Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Environmental Pollution, 2013, 177, 38-47.	3.7	82
21	Alternate wetting and drying irrigation for rice in Bangladesh: Is it sustainable and has plant breeding something to offer?. Food and Energy Security, 2013, 2, 120-129.	2.0	74
22	Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race–specific interactions. New Phytologist, 2004, 162, 197-209.	3.5	65
23	Assessing the genetic diversity of rice originating from Bangladesh, Assam and West Bengal. Rice, 2015, 8, 35.	1.7	63
24	A genome-wide association study of a global rice panel reveals resistance inOryza sativato root-knot nematodes. Journal of Experimental Botany, 2016, 67, 1191-1200.	2.4	63
25	Biomass and elemental concentrations of 22 rice cultivars grown under alternate wetting and drying conditions at three field sites in Bangladesh. Food and Energy Security, 2017, 6, 98-112.	2.0	49
26	Genome Wide Association Mapping of Grain and Straw Biomass Traits in the Rice Bengal and Assam Aus Panel (BAAP) Grown Under Alternate Wetting and Drying and Permanently Flooded Irrigation. Frontiers in Plant Science, 2018, 9, 1223.	1.7	41
27	Loci controlling partial resistance to rice blast do not show marked QTLÂ×Âenvironment interaction when plant nitrogen status alters disease severity. New Phytologist, 2005, 168, 455-464.	3.5	40
28	A bioinformatic and transcriptomic approach to identifying positional candidate genes without fine mapping: an example using rice root-growth QTLs. Genomics, 2008, 92, 344-352.	1.3	39
29	Effects of phosphate on arsenate and arsenite sensitivity in two rice (Oryza sativa L.) cultivars of different sensitivity. Environmental and Experimental Botany, 2011, 72, 47-52.	2.0	35
30	Rice–arsenate interactions in hydroponics: a three-gene model for tolerance. Journal of Experimental Botany, 2008, 59, 2277-2284.	2.4	34
31	Rapid temperature responses of photosystemÂll efficiency forecast genotypic variation in rice vegetative heat tolerance. Plant Journal, 2020, 104, 839-855.	2.8	33
32	Mapping of quantitative trait loci for seminal root morphology and gravitropic response in rice. Euphytica, 2009, 166, 229-237.	0.6	32
33	QTL mapping rolling, stomatal conductance and dimension traits of excised leaves in the Bala × Azucena recombinant inbred population of rice. Field Crops Research, 2008, 106, 248-257.	2.3	30
34	Genetic loci regulating arsenic content in rice grains when grown flooded or under alternative wetting and drying irrigation. Rice, 2019, 12, 54.	1.7	28
35	Physiological and genetic mapping study of tolerance to rootâ€knot nematode in rice. New Phytologist, 2007, 176, 665-672.	3.5	27
36	Interaction between contrasting rice genotypes and soil physical conditions induced by hydraulic stresses typical of alternate wetting and drying irrigation of soil. Plant and Soil, 2018, 430, 233-243.	1.8	27

ADAM H PRICE

3

#	Article	IF	CITATIONS
			CHATIONS
37	Arsenic in Bangladeshi soils related to physiographic region, paddy management, and mirco- and macro-elemental status. Science of the Total Environment, 2017, 590-591, 406-415.	3.9	26
38	Alternate wetting and drying in Bangladesh: Waterâ€saving farming practice and the socioeconomic barriers to its adoption. Food and Energy Security, 2018, 7, e00149.	2.0	25
39	A study on the susceptibility of rice cultivars to <i>Striga hermonthica </i> and mapping of <i>Striga </i> tolerance quantitative trait loci in rice. New Phytologist, 2008, 180, 206-216.	3.5	23
40	QTL-seq reveals a major root-knot nematode resistance locus on chromosome 11 in rice (Oryza sativa) Tj ETQqO	0 0 rgBT / 0.6	Overlock 10 ⁻ 23
41	Genome-Wide Association Mapping for Salt Tolerance of Rice Seedlings Grown in Hydroponic and Soil Systems Using the Bengal and Assam Aus Panel. Frontiers in Plant Science, 2020, 11, 576479.	1.7	21
42	Biallelic and Genome Wide Association Mapping of Germanium Tolerant Loci in Rice (Oryza sativa L.). PLoS ONE, 2015, 10, e0137577.	1.1	19
43	Effects of the application of a moderate alternate wetting and drying technique on the performance	2.3	16

40	of different European varieties in Northern Italy rice system. Field Crops Research, 2021, 270, 108220.	2.0	10
44	Contrasting ability of deep and shallow rooting rice genotypes to grow through plough pans containing simulated biopores and cracks. Plant and Soil, 2021, 467, 515-530.	1.8	11
45	Aus rice root architecture variation contributing to grain yield under drought suggests a key role of nodal root diameter class. Plant, Cell and Environment, 2022, 45, 854-870.	2.8	10
46	Superior Haplotypes for Early Root Vigor Traits in Rice Under Dry Direct Seeded Low Nitrogen Condition Through Genome Wide Association Mapping. Frontiers in Plant Science, 0, 13, .	1.7	10
47	Genome-wide association mapping of sodium and potassium concentration in rice grains and shoots under alternate wetting and drying and continuously flooded irrigation. Theoretical and Applied Genetics, 2021, 134, 2315-2334.	1.8	8
48	Genetic loci regulating cadmium content in rice grains. Euphytica, 2021, 217, 35.	0.6	7
49	Genomic Prediction of Arsenic Tolerance and Grain Yield in Rice: Contribution of Trait-Specific Markers and Multi-Environment Models. Rice Science, 2021, 28, 268-278.	1.7	6
50	Identification of genomic loci regulating grain iron content in <i>aus</i> rice under two irrigation management systems. Food and Energy Security, 2022, 11, e329.	2.0	6
51	Genetic and root phenotype diversity in Sri Lankan rice landraces may be related to drought resistance. Rice, 2016, 9, 24.	1.7	5

52Plant roots: new challenges in a changing world. Journal of Experimental Botany, 2016, 67, 991-993.2.4