Keng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8662051/publications.pdf

Version: 2024-02-01

33	1,152	20	33
papers	citations	h-index	g-index
33	33 docs citations	33	1346
all docs		times ranked	citing authors

#	Article	IF	Citations
1	Hetero-epitaxy growth of cobalt oxide/nickel oxide nanowire arrays on alumina substrates for enhanced ethanol sensing characteristics. Ceramics International, 2022, 48, 3849-3859.	4.8	10
2	Hierarchical Porous and Sandwich-like Sulfur-Doped Carbon Nanosheets as High-Performance Anodes for Sodium-lon Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 2126-2135.	3.7	11
3	Enhanced Gas Sensing Performance of rGO Wrapped Crystal Facet-Controlled Co ₃ O ₄ Nanocomposite Heterostructures. Journal of Physical Chemistry C, 2022, 126, 4879-4888.	3.1	9
4	Interface Engineering of Fe ₂ O ₃ @Co ₃ O ₄ Nanocubes for Enhanced Triethylamine Sensing Performance. Industrial & Engineering Chemistry Research, 2022, 61, 8057-8068.	3.7	17
5	Light-assisted room temperature gas sensing performance and mechanism of direct Z-scheme MoS2/SnO2 crystal faceted heterojunctions. Journal of Hazardous Materials, 2022, 436, 129246.	12.4	13
6	Pore engineering of Co3O4 nanowire arrays by MOF-assisted construction for enhanced acetone sensing performances. Sensors and Actuators B: Chemical, 2021, 329, 129095.	7.8	39
7	Controllable synthesis of one-dimensional NiS2 nanotube and nanorod arrays on nickel foams for efficient electrocatalytic water splitting. International Journal of Hydrogen Energy, 2021, 46, 50-60.	7.1	9
8	Tunable resistance of MOFs films via an anion exchange strategy for advanced gas sensing. Journal of Hazardous Materials, 2021, 416, 125906.	12.4	28
9	Highly Mesoporous Cobalt-Hybridized 2D Cu ₃ P Nanosheet Arrays as Boosting Janus Electrocatalysts for Water Splitting. Inorganic Chemistry, 2021, 60, 18325-18336.	4.0	8
10	In situ growth of Co3O4@NiMoO4 composite arrays on alumina substrate with improved triethylamine sensing performance. Sensors and Actuators B: Chemical, 2020, 302, 127154.	7.8	74
11	Crystal facets engineering and rGO hybridizing for synergistic enhancement of photocatalytic activity of nickel disulfide. Journal of Hazardous Materials, 2020, 384, 121402.	12.4	11
12	Controllable preparation of faceted Co3O4 nanocrystals@MnO2 nanowires shish-kebab structures with enhanced triethylamine sensing performance. Sensors and Actuators B: Chemical, 2020, 304, 127358.	7.8	36
13	MOF-derived Co3O4/Fe2O3 p-n hollow cubes for improved acetone sensing characteristics. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113869.	2.7	26
14	Enhanced ethanol sensing performance using Co3O4–ZnSnO3 arrays prepared on alumina substrates. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113825.	2.7	20
15	Density-dependent of gas-sensing properties of Co3O4 nanowire arrays. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113956.	2.7	20
16	P–N heterointerface-determined acetone sensing characteristics of α-MoO ₃ @NiOcore@shell nanobelts. CrystEngComm, 2019, 21, 5834-5844.	2.6	27
17	Design of NiCo2O4 porous nanosheets/α-MoO3 nanorods heterostructures for ppb-level ethanol detection. Powder Technology, 2019, 345, 633-642.	4.2	25
18	Highly dispersed Pt nanoparticles on hierarchical titania nanoflowers with {010} facets for gas sensing and photocatalysis. Journal of Materials Science, 2019, 54, 6826-6840.	3.7	12

#	Article	IF	CITATIONS
19	Synthesis and gas-sensing properties of ZnO@NiCo2O4 core@shell nanofibers. Materials Research Bulletin, 2019, 114, 1-9.	5.2	18
20	A systematic study on the crystal facets-dependent gas sensing properties of anatase TiO2 with designed {010}, {101} and {001} facets. Ceramics International, 2019, 45, 6282-6290.	4.8	28
21	2D ultra-thin WO3 nanosheets with dominant {002} crystal facets for high-performance xylene sensing and methyl orange photocatalytic degradation. Journal of Alloys and Compounds, 2019, 783, 848-854.	5.5	64
22	Active {1â€13€1}-faceted ultra-thin NiO single-crystalline porous nanosheets supported highly dispersed Pt nanoparticles for synergetic enhancement of gas sensing and photocatalytic performance. Applied Surface Science, 2019, 471, 124-133.	6.1	14
23	High selectivity of sulfur-doped SnO ₂ in NO ₂ detection at lower operating temperatures. Nanoscale, 2018, 10, 20761-20771.	5.6	68
24	WO3 nanofibers anchored by porous NiCo2O4 nanosheets for xylene detection. Ceramics International, 2018, 44, 21717-21724.	4.8	29
25	Tuning strain and photoluminescence of confined Au nanoparticles by hydrogen passivation. RSC Advances, 2017, 7, 6875-6879.	3.6	8
26	Fabrication of novel flower-like Co 3 O 4 structures assembled by single-crystalline porous nanosheets for enhanced xylene sensing properties. Journal of Alloys and Compounds, 2017, 706, 116-125.	5.5	49
27	Single-crystalline porous nanosheets assembled hierarchical Co3O4 microspheres for enhanced gas-sensing properties to trace xylene. Sensors and Actuators B: Chemical, 2017, 246, 68-77.	7.8	60
28	Improved ethanol gas sensing performances of a ZnO/Co ₃ O ₄ composite induced by its flytrap-like structure. Physical Chemistry Chemical Physics, 2017, 19, 29601-29607.	2.8	31
29	High-energy {001} crystal facets and surface fluorination engineered gas sensing properties of anatase titania nanocrystals. Applied Surface Science, 2017, 423, 602-610.	6.1	38
30	Core–shell-structured hollow carbon nanofiber@nitrogen-doped porous carbon composite materials as anodes for advanced sodium-ion batteries. Journal of Materials Science, 2017, 52, 2356-2365.	3.7	12
31	Effect of Grain-Boundaries in NiO Nanosheet Layers Room-Temperature Sensing Mechanism under NO ₂ . Journal of Physical Chemistry C, 2015, 119, 17930-17939.	3.1	60
32	Interface Bonds Determined Gas-Sensing of SnO ₂ –SnS ₂ Hybrids to Ammonia at Room Temperature. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11359-11368.	8.0	191
33	Hierarchical porous SnO2 micro-rods topologically transferred from tin oxalate for fast response sensors to trace formaldehyde. Sensors and Actuators B: Chemical, 2014, 190, 585-592.	7.8	87