BalÃ;zs Papp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8662018/publications.pdf

Version: 2024-02-01

85541 66343 10,078 71 42 71 citations h-index g-index papers 93 93 93 12900 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Genetic Landscape of a Cell. Science, 2010, 327, 425-431.	12.6	1,937
2	Dosage sensitivity and the evolution of gene families in yeast. Nature, 2003, 424, 194-197.	27.8	757
3	Mapping Pathways and Phenotypes by Systematic Gene Overexpression. Molecular Cell, 2006, 21, 319-330.	9.7	618
4	Highly Expressed Genes in Yeast Evolve Slowly. Genetics, 2001, 158, 927-931.	2.9	556
5	Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nature Genetics, 2005, 37, 1372-1375.	21.4	473
6	An integrated view of protein evolution. Nature Reviews Genetics, 2006, 7, 337-348.	16.3	460
7	Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nature Microbiology, 2018, 3, 718-731.	13.3	325
8	Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature, 2004, 429, 661-664.	27.8	324
9	Bacterial evolution of antibiotic hypersensitivity. Molecular Systems Biology, 2013, 9, 700.	7.2	277
10	Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nature Communications, 2019, 10, 4538.	12.8	222
11	Collateral sensitivity of antibiotic-resistant microbes. Trends in Microbiology, 2015, 23, 401-407.	7.7	220
12	Chance and necessity in the evolution of minimal metabolic networks. Nature, 2006, 440, 667-670.	27.8	219
13	Rate of evolution and gene dispensability. Nature, 2003, 421, 496-497.	27.8	205
14	Antagonism between Bacteriostatic and Bactericidal Antibiotics Is Prevalent. Antimicrobial Agents and Chemotherapy, 2014, 58, 4573-4582.	3.2	198
15	Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nature Communications, 2014, 5, 4352.	12.8	195
16	An integrated approach to characterize genetic interaction networks in yeast metabolism. Nature Genetics, 2011, 43, 656-662.	21.4	194
17	Plasticity of genetic interactions in metabolic networks of yeast. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2307-2312.	7.1	185
18	The Genomic Landscape of Compensatory Evolution. PLoS Biology, 2014, 12, e1001935.	5.6	150

#	Article	IF	Citations
19	Phenotypic heterogeneity promotes adaptive evolution. PLoS Biology, 2017, 15, e2000644.	5. 6	128
20	Evolution of cis-regulatory elements in duplicated genes of yeast. Trends in Genetics, 2003, 19, 417-422.	6.7	127
21	Systems-biology approaches for predicting genomic evolution. Nature Reviews Genetics, 2011, 12, 591-602.	16.3	112
22	High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Science Translational Medicine, $2018,10,.$	12.4	102
23	Network-level architecture and the evolutionary potential of underground metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11762-11767.	7.1	101
24	Genetic interactions reveal the evolutionary trajectories of duplicate genes. Molecular Systems Biology, 2010, 6, 429.	7.2	97
25	ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics, 2012, 28, 2202-2204.	4.1	91
26	Erroneous energy-generating cycles in published genome scale metabolic networks: Identification and removal. PLoS Computational Biology, 2017, 13, e1005494.	3.2	88
27	Molecular chaperones as regulatory elements of cellular networks. Current Opinion in Cell Biology, 2005, 17, 210-215.	5.4	85
28	Co-Regulation of Metabolic Genes Is Better Explained by Flux Coupling Than by Network Distance. PLoS Computational Biology, 2008, 4, e26.	3.2	81
29	Indispensability of Horizontally Transferred Genes and Its Impact on Bacterial Genome Streamlining. Molecular Biology and Evolution, 2016, 33, 1257-1269.	8.9	80
30	Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5726-E5735.	7.1	74
31	A critical view of metabolic network adaptations. HFSP Journal, 2009, 3, 24-35.	2.5	68
32	Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota. Nature Microbiology, 2019, 4, 447-458.	13.3	68
33	Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Research, 2012, 22, 791-801.	5.5	65
34	Evaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling. Genome Research, 2007, 17, 510-519.	5 . 5	64
35	Systematic Genome Reductions:Â Theoretical and Experimental Approaches. Chemical Reviews, 2007, 107, 3498-3513.	47.7	60
36	Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks. Genome Biology, 2008, 9, R51.	9.6	60

#	Article	IF	CITATIONS
37	Adaptive evolution of complex innovations through stepwise metabolic niche expansion. Nature Communications, 2016, 7, 11607.	12.8	60
38	Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biology, 2014, 15, R64.	9.6	57
39	Pathogen diversity drives the evolution of generalist MHC-II alleles in human populations. PLoS Biology, 2019, 17, e3000131.	5 . 6	56
40	Perturbation of Iron Homeostasis Promotes the Evolution of Antibiotic Resistance. Molecular Biology and Evolution, 2014, 31, 2793-2804.	8.9	54
41	Rapid decline of bacterial drug-resistance in an antibiotic-free environment through phenotypic reversion. ELife, 2019, 8, .	6.0	54
42	Does the Recombination Rate Affect the Efficiency of Purifying Selection? The Yeast Genome Provides a Partial Answer. Molecular Biology and Evolution, 2001, 18, 2323-2326.	8.9	52
43	Enzyme promiscuity shapes adaptation to novel growth substrates. Molecular Systems Biology, 2019, 15, e8462.	7.2	52
44	The dawn of evolutionary genome engineering. Nature Reviews Genetics, 2014, 15, 504-512.	16.3	45
45	Underground metabolism: network-level perspective and biotechnological potential. Current Opinion in Biotechnology, 2018, 49, 108-114.	6.6	45
46	Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins. Nature Structural and Molecular Biology, 2018, 25, 279-288.	8.2	43
47	Limited Evolutionary Conservation of the Phenotypic Effects of Antibiotic Resistance Mutations. Molecular Biology and Evolution, 2019, 36, 1601-1611.	8.9	37
48	Stochasticity in Protein Levels Drives Colinearity of Gene Order in Metabolic Operons of Escherichia coli. PLoS Biology, 2009, 7, e1000115.	5.6	35
49	Competition between Transposable Elements and Mutator Genes in Bacteria. Molecular Biology and Evolution, 2012, 29, 3153-3159.	8.9	35
50	Metabolic modeling of endosymbiont genome reduction on a temporal scale. Molecular Systems Biology, 2011, 7, 479.	7.2	34
51	Metabolic reconstruction and analysis for parasite genomes. Trends in Parasitology, 2007, 23, 548-554.	3.3	33
52	Evolution of complex adaptations in molecular systems. Nature Ecology and Evolution, 2017, 1, 1084-1092.	7.8	31
53	Hsp70-associated chaperones have a critical role in buffering protein production costs. ELife, 2018, 7, .	6.0	29
54	Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. Nature Communications, 2019, 10, 5731.	12.8	29

#	Article	IF	Citations
55	Exploring the fitness benefits of genome reduction in Escherichia coli by a selection-driven approach. Scientific Reports, 2020, 10, 7345.	3.3	27
56	Unmatched Level of Molecular Convergence among Deeply Divergent Complex Multicellular Fungi. Molecular Biology and Evolution, 2020, 37, 2228-2240.	8.9	23
57	Cancer cell metabolism as new targets for novel designed therapies. Future Medicinal Chemistry, 2014, 6, 1791-1810.	2.3	22
58	Model-driven discovery of long-chain fatty acid metabolic reprogramming in heterogeneous prostate cancer cells. PLoS Computational Biology, 2018, 14, e1005914.	3.2	22
59	Phenotypic Activation to Discover Biological Pathways and Kinase Substrates. Cell Cycle, 2006, 5, 1397-1402.	2.6	18
60	Selfish cells threaten multicellular life. Trends in Ecology and Evolution, 2000, 15, 351-352.	8.7	16
61	Gene loss and compensatory evolution promotes the emergence of morphological novelties in budding yeast. Nature Ecology and Evolution, 2022, 6, 763-773.	7.8	16
62	Molecular mechanisms underlying COPD-muscle dysfunction unveiled through a systems medicine approach. Bioinformatics, 2017, 33, 95-103.	4.1	15
63	Genome-wide analysis of the context-dependence of regulatory networks. Genome Biology, 2005, 6, 206.	9.6	13
64	Negative trade-off between neoantigen repertoire breadth and the specificity of HLA-I molecules shapes antitumor immunity. Nature Cancer, 2021, 2, 950-961.	13.2	13
65	Use of Genome-Scale Metabolic Models in Evolutionary Systems Biology. Methods in Molecular Biology, 2011, 759, 483-497.	0.9	9
66	Systems biology of epistasis: Shedding light on genetic interaction network "hubs― Cell Cycle, 2011, 10, 3623-3624.	2.6	9
67	Suboptimal Global Transcriptional Response Increases the Harmful Effects of Loss-of-Function Mutations. Molecular Biology and Evolution, 2021, 38, 1137-1150.	8.9	9
68	From passengers to drivers. Mobile Genetic Elements, 2013, 3, e23617.	1.8	8
69	No Evidence That Protein Noise-Induced Epigenetic Epistasis Constrains Gene Expression Evolution. Molecular Biology and Evolution, 2016, 34, msw236.	8.9	2
70	New recipe for targeting resistance. Nature Chemical Biology, 2016, 12, 891-892.	8.0	2
71	Underground metabolism as a rich reservoir for pathway engineering. Bioinformatics, 2022, 38, 3070-3077.	4.1	2