
David J Scanlan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8661813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological Genomics of Marine Picocyanobacteria. Microbiology and Molecular Biology Reviews, 2009, 73, 249-299.	2.9	642
2	Widespread occurrence and genetic diversity of marine parasitoids belonging to <i>Syndiniales</i> (<i>Alveolata</i>). Environmental Microbiology, 2008, 10, 3349-3365.	1.8	511
3	Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10020-10025.	3.3	442
4	Global phylogeography of marine <i>Synechococcus</i> and <i>Prochlorococcus</i> reveals a distinct partitioning of lineages among oceanic biomes. Environmental Microbiology, 2008, 10, 147-161.	1.8	398
5	Clade-Specific 16S Ribosomal DNA Oligonucleotides Reveal the Predominance of a Single Marine Synechococcus Clade throughout a Stratified Water Column in the Red Sea. Applied and Environmental Microbiology, 2003, 69, 2430-2443.	1.4	293
6	Unravelling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biology, 2008, 9, R90.	13.9	288
7	Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME Journal, 2010, 4, 1180-1192.	4.4	276
8	Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath). PLoS Biology, 2004, 2, e303.	2.6	275
9	Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biology, 2007, 8, R259.	13.9	257
10	Mixotrophic basis of Atlantic oligotrophic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5756-5760.	3.3	255
11	Rapid Diversification of Marine Picophytoplankton with Dissimilar Light-Harvesting Structures Inferred from Sequences of Prochlorococcus and Synechococcus (Cyanobacteria). Journal of Molecular Evolution, 1998, 46, 188-201.	0.8	230
12	Cyanobacteria and Eukaryotic Algae Use Different Chemical Variants of Vitamin B12. Current Biology, 2016, 26, 999-1008.	1.8	220
13	Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiology Ecology, 2002, 40, 1-12.	1.3	208
14	Niche-Partitioning of <i>Prochlorococcus</i> Populations in a Stratified Water Column in the Eastern North Atlantic Ocean. Applied and Environmental Microbiology, 1999, 65, 2585-2591.	1.4	206
15	Oceanographic Basis of the Global Surface Distribution of Prochlorococcus Ecotypes. Science, 2006, 312, 918-921.	6.0	193
16	Elemental composition of single cells of various strains of marine <i>Prochlorococcus</i> and <i>Synechococcus</i> using Xâ€ray microanalysis. Limnology and Oceanography, 2003, 48, 1732-1743.	1.6	192
17	Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nature Microbiology, 2017, 2, 17100.	5.9	181
18	Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton. Environmental Microbiology, 2005, 7, 499-508.	1.8	173

#	Article	IF	CITATIONS
19	Ecotypic variation in phosphorus-acquisition mechanisms within marine picocyanobacteria. Aquatic Microbial Ecology, 2005, 39, 257-269.	0.9	165
20	Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proceedings of the United States of America, 2015, 112, 13591-13596.	3.3	159
21	Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3365-74.	3.3	159
22	Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides The GenBank accession numbers for the sequences reported in this paper are AF311217 (RCC278, EQPAC1), AF311218 (RCC277, NATL1MIT), AF311219 (RCC280, NATL2B), AF311220 (RCC264, TAK9803-2), AF311291 (WI AF311292 (WH8018) and AF311293 (WH8103) Microbiology (United Kingdom), 2001, 147, 1731-1744.	0.7 H7803),	158
23	Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environmental Microbiology, 2005, 7, 1505-1513.	1.8	149
24	Groups without Cultured Representatives Dominate Eukaryotic Picophytoplankton in the Oligotrophic South East Pacific Ocean. PLoS ONE, 2009, 4, e7657.	1.1	145
25	Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environmental Microbiology, 2007, 9, 1278-1290.	1.8	143
26	Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of <i>Synechococcus</i> host genes localized to a hyperplastic region: implications for mechanisms of cyanophage evolution. Environmental Microbiology, 2009, 11, 2370-2387.	1.8	139
27	Prochlorococcus Ecotype Abundances in the North Atlantic Ocean As Revealed by an Improved Quantitative PCR Method. Applied and Environmental Microbiology, 2006, 72, 723-732.	1.4	138
28	Multiâ€locus sequence analysis, taxonomic resolution and biogeography of marine <i>Synechococcus</i> . Environmental Microbiology, 2012, 14, 372-386.	1.8	123
29	Dynamics of community structure and phosphate status of picocyanobacterial populations in the Gulf of Aqaba, Red Sea. Limnology and Oceanography, 2005, 50, 363-375.	1.6	110
30	Microbial control of phosphate in the nutrient-depleted North Atlantic subtropical gyre. Environmental Microbiology, 2007, 9, 2079-2089.	1.8	105
31	PCR Analysis of the Distribution of Unicellular Cyanobacterial Diazotrophs in the Arabian Sea. Applied and Environmental Microbiology, 2004, 70, 7355-7364.	1.4	97
32	The response of the picoplanktonic marine cyanobacterium Synechococcus species WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli. Molecular Microbiology, 1993, 10, 181-191.	1.2	96
33	Insights into the Physiology and Ecology of the Brackish-Water-Adapted Cyanobacterium Nodularia spumigena CCY9414 Based on a Genome-Transcriptome Analysis. PLoS ONE, 2013, 8, e60224.	1.1	95
34	Comparative genomic, proteomic and exoproteomic analyses of three <i>Pseudomonas</i> strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria. Environmental Microbiology, 2016, 18, 3535-3549.	1.8	95
35	Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME Journal, 2016, 10, 968-978.	4.4	95
36	Molecular diversity among marine picophytoplankton as revealed by psbA analyses. Environmental Microbiology, 2003, 5, 212-216.	1.8	94

#	Article	IF	CITATIONS
37	Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquatic Microbial Ecology, 2006, 43, 79-93.	0.9	94
38	Viruses Inhibit CO 2 Fixation in the Most Abundant Phototrophs on Earth. Current Biology, 2016, 26, 1585-1589.	1.8	94
39	Is the distribution of <i>Prochlorococcus</i> and <i>Synechococcus</i> ecotypes in the Mediterranean Sea affected by global warming?. Biogeosciences, 2011, 8, 2785-2804.	1.3	92
40	Light color acclimation is a key process in the global ocean distribution of <i>Synechococcus cyanobacteria</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2010-E2019.	3.3	91
41	Waterâ€column stratification governs the community structure of subtropical marine picophytoplankton. Environmental Microbiology Reports, 2011, 3, 473-482.	1.0	90
42	Physiological diversity and niche adaptation in marine Synechococcus. Advances in Microbial Physiology, 2003, 47, 1-64.	1.0	87
43	Bacterial zinc uptake regulator proteins and their regulons. Biochemical Society Transactions, 2018, 46, 983-1001.	1.6	86
44	Light enhanced amino acid uptake by dominant bacterioplankton groups in surface waters of the Atlantic Ocean. FEMS Microbiology Ecology, 2008, 63, 36-45.	1.3	84
45	Novel lineages of <i>Prochlorococcus</i> thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environmental Microbiology Reports, 2010, 2, 728-738.	1.0	83
46	Functional Characterization of <i>Synechocystis</i> sp. Strain PCC 6803 <i>pst1</i> and <i>pst2</i> Gene Clusters Reveals a Novel Strategy for Phosphate Uptake in a Freshwater Cyanobacterium. Journal of Bacteriology, 2010, 192, 3512-3523.	1.0	81
47	Plastid 16S rRNA Gene Diversity among Eukaryotic Picophytoplankton Sorted by Flow Cytometry from the South Pacific Ocean. PLoS ONE, 2011, 6, e18979.	1.1	76
48	Shedding new light on viral photosynthesis. Photosynthesis Research, 2015, 126, 71-97.	1.6	76
49	Genetic diversity of eukaryotic ultraphytoplankton in the Gulf of Naples during an annual cycle. Aquatic Microbial Ecology, 2007, 50, 75-89.	0.9	75
50	Photosynthetic picoeukaryote community structure in the South East Pacific Ocean encompassing the most oligotrophic waters on Earth. Environmental Microbiology, 2009, 11, 3105-3117.	1.8	75
51	A global perspective on marine photosynthetic picoeukaryote community structure. ISME Journal, 2013, 7, 922-936.	4.4	75
52	Comparative phosphorus nutrition of the marine cyanobacterium Synechococcus WH7803 and the marine diatom Thalassiosira weissflogii. Journal of Plankton Research, 1997, 19, 1793-1813.	0.8	74
53	<i>In situ</i> interactions between photosynthetic picoeukaryotes and bacterioplankton in the <scp>A</scp> tlantic <scp>O</scp> cean: evidence for mixotrophy. Environmental Microbiology Reports, 2013, 5, 835-840.	1.0	74
54	Niche-adaptation in plant-associated <i>Bacteroidetes</i> favours specialisation in organic phosphorus mineralisation. ISME Journal, 2021, 15, 1040-1055.	4.4	74

#	Article	IF	CITATIONS
55	High vertical and low horizontal diversity of Prochlorococcus ecotypes in the Mediterranean Sea in summer. FEMS Microbiology Ecology, 2007, 60, 189-206.	1.3	67
56	From small hosts come big viruses: the complete genome of a second <i>Ostreococcus tauri</i> virus, OtVâ€1. Environmental Microbiology, 2009, 11, 2821-2839.	1.8	64
57	Comparable light stimulation of organic nutrient uptake by SAR11 and <i>Prochlorococcus</i> in the North Atlantic subtropical gyre. ISME Journal, 2013, 7, 603-614.	4.4	64
58	Construction of lacZ promoter probe vectors for use in Synechococcus: application to the identification of CO2-regulated promoters. Gene, 1990, 90, 43-49.	1.0	63
59	Molecular analysis of picocyanobacterial community structure along an Arabian Sea transect reveals distinct spatial separation of lineages. Limnology and Oceanography, 2006, 51, 2515-2526.	1.6	63
60	Title is missing!. Hydrobiologia, 1999, 401, 149-175.	1.0	62
61	The occurrence of rapidly reversible non-photochemical quenching of chlorophyllafluorescence in cyanobacteria. FEBS Letters, 2005, 579, 275-280.	1.3	62
62	Energy limitation of cyanophage development: implications for marine carbon cycling. ISME Journal, 2018, 12, 1273-1286.	4.4	62
63	Protein fractionation and detection for metalloproteomics: challenges and approaches. Analytical and Bioanalytical Chemistry, 2012, 402, 3311-3322.	1.9	60
64	Molecular analysis of photosynthetic picoeukaryote community structure along an Arabian Sea transect. Limnology and Oceanography, 2006, 51, 2502-2514.	1.6	58
65	High degree of genetic variation inProchlorococcus(Prochlorophyta) revealed by RFLP analysis. European Journal of Phycology, 1996, 31, 1-9.	0.9	55
66	Genome Sequence of Ostreococcus tauri Virus OtV-2 Throws Light on the Role of Picoeukaryote Niche Separation in the Ocean. Journal of Virology, 2011, 85, 4520-4529.	1.5	55
67	Functional distinctness in the exoproteomes of marine <scp><i>S</i></scp> <i>ynechococcus</i> . Environmental Microbiology, 2015, 17, 3781-3794.	1.8	55
68	Diel rhythmicity in amino acid uptake by <i>Prochlorococcus</i> . Environmental Microbiology, 2008, 10, 2124-2131.	1.8	54
69	Mining Genomes of Marine Cyanobacteria for Elements of Zinc Homeostasis. Frontiers in Microbiology, 2012, 3, 142.	1.5	51
70	"You produce while I clean upâ€; a strategy revealed by exoproteomics during <i>Synechococcus</i> – <i>Roseobacter</i> interactions. Proteomics, 2015, 15, 3454-3462.	1.3	50
71	Marine Picocyanobacteria. , 2012, , 503-533.		48
72	Marine phage genomics: the tip of the iceberg. FEMS Microbiology Letters, 2016, 363, fnw158.	0.7	48

#	Article	IF	CITATIONS
73	ACCLIMATION OF EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) TO PHOTON FLUX DENSITY1. Journal of Phycology, 2005, 41, 851-862.	1.0	45
74	Distinct Spatial Patterns of SAR11, SAR86, and Actinobacteria Diversity along a Transect in the Ultra-oligotrophic South Pacific Ocean. Frontiers in Microbiology, 2016, 7, 234.	1.5	45
75	Differential grazing of two heterotrophic nanoflagellates on marine <i>Synechococcus</i> strains. Environmental Microbiology, 2009, 11, 1767-1776.	1.8	43
76	Basinâ€scale distribution patterns of photosynthetic picoeukaryotes along an Atlantic Meridional Transect. Environmental Microbiology, 2011, 13, 975-990.	1.8	43
77	PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine <i>Synechococcus</i> . ISME Journal, 2010, 4, 908-921.	4.4	42
78	Comparative Genomics of Bacteriophage of the Genus Seuratvirus. Genome Biology and Evolution, 2018, 10, 72-76.	1.1	41
79	Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942. Journal of Bacteriology, 1995, 177, 2550-2553.	1.0	40
80	Efficient CO2 fixation by surface <i>Prochlorococcus</i> in the Atlantic Ocean. ISME Journal, 2014, 8, 2280-2289.	4.4	39
81	Comparative genomics and mutagenesis analyses of choline metabolism in the marine <scp><i>R</i></scp> <i>oseobacter</i> clade. Environmental Microbiology, 2015, 17, 5048-5062.	1.8	39
82	Thermoacclimation and genome adaptation of the membrane lipidome in marine <i>Synechococcus</i> . Environmental Microbiology, 2018, 20, 612-631.	1.8	39
83	High resolution genetic diversity studies of marine Synechococcus isolates using rpoC1-based restriction fragment length polymorphism. Aquatic Microbial Ecology, 2006, 45, 263-275.	0.9	39
84	Cyanorak v2.1: a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes. Nucleic Acids Research, 2021, 49, D667-D676.	6.5	38
85	NITROGEN STRESS RESPONSE OFPROCHLOROCOCCUSSTRAIN PCC 9511 (OXYPHOTOBACTERIA) INVOLVES CONTRASTING REGULATION OFntcAANDamt11. Journal of Phycology, 2002, 38, 1113-1124.	1.0	37
86	Evolutionary Mechanisms of Long-Term Genome Diversification Associated With Niche Partitioning in Marine Picocyanobacteria. Frontiers in Microbiology, 2020, 11, 567431.	1.5	37
87	Cloning and sequence analysis of the glucose-6-phosphate dehydrogenase gene from the cyanobacterium Synechococcus PCC 7942. Plant Molecular Biology, 1992, 19, 877-880.	2.0	36
88	The â€~known' genetic potential for microbial communities to degrade organic phosphorus is reduced in lowâ€pH soils. MicrobiologyOpen, 2017, 6, e00474.	1.2	34
89	Riding the wave of genomics to investigate aquatic coliphage diversity and activity. Environmental Microbiology, 2019, 21, 2112-2128.	1.8	33
90	DISSECTING THE PHYSIOLOGICAL RESPONSE TO PHOSPHORUS STRESS IN MARINE <i>SYNECHOCOCCUS</i> ISOLATES (CYANOPHYCEAE) ¹ . Journal of Phycology, 2012, 48, 94-105.	1.0	31

#	Article	IF	CITATIONS
91	Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot nucleotides. Environmental Microbiology Reports, 2019, 11, 448-455.	1.0	31
92	An antisense RNA in a lytic cyanophage links <i>psbA</i> to a gene encoding a homing endonuclease. ISME Journal, 2010, 4, 1121-1135.	4.4	30
93	Fractionation and identification of metalloproteins from a marine cyanobacterium. Analytical and Bioanalytical Chemistry, 2012, 402, 3371-3377.	1.9	30
94	<i>In situ</i> associations between marine photosynthetic picoeukaryotes and potential parasites – a role for fungi?. Environmental Microbiology Reports, 2016, 8, 445-451.	1.0	30
95	Identification of dimethylamine monooxygenase in marine bacteria reveals a metabolic bottleneck in the methylated amine degradation pathway. ISME Journal, 2017, 11, 1592-1601.	4.4	30
96	Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation. Scientific Reports, 2017, 7, 2179.	1.6	30
97	Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone. Applied and Environmental Microbiology, 2017, 83, .	1.4	30
98	Effect of iron and other nutrient limitations on the pattern of outer membrane proteins in the cyanobacterium Synechococcus PCC7942. Archives of Microbiology, 1989, 152, 224-228.	1.0	29
99	Invariable biomassâ€specific primary production of taxonomically discrete picoeukaryote groups across the Atlantic Ocean. Environmental Microbiology, 2011, 13, 3266-3274.	1.8	29
100	A microarray for assessing transcription from pelagic marine microbial taxa. ISME Journal, 2014, 8, 1476-1491.	4.4	29
101	Elucidation of glutamine lipid biosynthesis in marine bacteria reveals its importance under phosphorus deplete growth in <i>Rhodobacteraceae</i> . ISME Journal, 2019, 13, 39-49.	4.4	27
102	A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	26
103	Multiple oligomieric forms of glucoses-6-phosphate dehydrogenase in cyanobacteria and the role of OpeA in the assembly process. Microbiology (United Kingdom), 1998, 144, 1549-1556.	0.7	25
104	Genomic and proteomic characterization of two novel siphovirus infecting the sedentary facultative epibiont cyanobacterium <scp><i><i><i><cp><i>caryochloris marina</i>. Environmental Microbiology, 2015, 17, 4239-4252.</cp></i></i></i></scp>	1.8	25
105	Pigment composition and adaptation in free-living and symbiotic strains of Acaryochloris marina. FEMS Microbiology Ecology, 2007, 61, 65-73.	1.3	24
106	A comparison of gene organization in thezwfregion of the genomes of the cyanobacteriaSynechococcussp. PCC 7942 andAnabaenasp. PCC 7120. FEMS Microbiology Letters, 1995, 133, 187-193.	0.7	23
107	Photoheterotrophy of bacterioplankton is ubiquitous in the surface oligotrophic ocean. Progress in Oceanography, 2015, 135, 139-145.	1.5	23
108	Elemental composition of natural populations of key microbial groups in <scp>A</scp> tlantic waters. Environmental Microbiology, 2013, 15, 3054-3064.	1.8	22

#	Article	IF	CITATIONS
109	Membrane organization of photosystem I complexes in the most abundant phototroph on Earth. Nature Plants, 2019, 5, 879-889.	4.7	22
110	Pili allow dominant marine cyanobacteria to avoid sinking and evade predation. Nature Communications, 2021, 12, 1857.	5.8	22
111	Characterization of the genes encoding a phosphate-regulated two component sensory system in the marine cyanobacteriumSynechococcussp. WH7803. FEMS Microbiology Letters, 1996, 142, 105-109.	0.7	21
112	Responses of <i>Emiliania huxleyi</i> (Prymnesiophyceae) to step changes in photon flux density. European Journal of Phycology, 2009, 44, 31-48.	0.9	21
113	Development of a targeted metagenomic approach to study a genomic region involved in light harvesting in marine <i>Synechococcus</i> . FEMS Microbiology Ecology, 2014, 88, 231-249.	1.3	21
114	Accumulation of ambient phosphate into the periplasm of marine bacteria is proton motive force dependent. Nature Communications, 2020, 11, 2642.	5.8	21
115	Transporter characterisation reveals aminoethylphosphonate mineralisation as a key step in the marine phosphorus redox cycle. Nature Communications, 2021, 12, 4554.	5.8	21
116	Discovery of Cyanophage Genomes Which Contain Mitochondrial DNA Polymerase. Molecular Biology and Evolution, 2011, 28, 2269-2274.	3.5	20
117	Phosphorus stress induces the synthesis of novel glycolipids in <i>Pseudomonas aeruginosa</i> that confer protection against a last-resort antibiotic. ISME Journal, 2021, 15, 3303-3314.	4.4	20
118	The SphX protein of Synechococcus species PCC 7942 belongs to a family of phosphate-binding proteins. Molecular Microbiology, 1994, 14, 595-596.	1.2	19
119	A putative transcriptional activator of the Crp/Fnr family from the marine cyanobacteriumSynechococcus sp. WH7803. Journal of Applied Phycology, 1996, 8, 565-567.	1.5	19
120	Acrylate protects a marine bacterium from grazing by a ciliate predator. Nature Microbiology, 2021, 6, 1351-1356.	5.9	18
121	Bacterial Vesicles in the Ocean. Science, 2014, 343, 143-144.	6.0	17
122	Identification of major zinc-binding proteins from a marine cyanobacterium: insight into metal uptake in oligotrophic environments. Metallomics, 2014, 6, 1254-1268.	1.0	17
123	Dominant oceanic bacteria secure phosphate using a large extracellular buffer. Nature Communications, 2015, 6, 7878.	5.8	17
124	Metaproteomic and metagenomic analyses of defined oceanic microbial populations using microwave cell fixation and flow cytometric sorting. FEMS Microbiology Ecology, 2010, 74, 10-18.	1.3	15
125	Identification of a cyanobacterial aldehyde dehydrogenase that produces retinoic acid inÂvitro. Biochemical and Biophysical Research Communications, 2019, 510, 27-34.	1.0	15
126	Proteomics insights into the <i>Burkholderia cenocepacia</i> phosphorus stress response. Environmental Microbiology, 2021, 23, 5069-5086.	1.8	15

#	Article	IF	CITATIONS
127	A Suppression Subtractive Hybridization Approach Reveals Niche-Specific Genes That May Be Involved in Predator Avoidance in Marine Synechococcus Isolates. Applied and Environmental Microbiology, 2006, 72, 2730-2737.	1.4	14
128	Analysis of photosynthetic picoeukaryote community structure along an extended Ellett Line transect in the northern North Atlantic reveals a dominance of novel prymnesiophyte and prasinophyte phylotypes. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 733-744.	0.6	14
129	The Tat protein export pathway and its role in cyanobacterial metalloprotein biosynthesis. FEMS Microbiology Letters, 2011, 325, 1-9.	0.7	14
130	Comparison of phosphate uptake rates by the smallest plastidic and aplastidic protists in the North Atlantic subtropical gyre. FEMS Microbiology Ecology, 2011, 78, 327-335.	1.3	14
131	From Trees to Clouds: PhageClouds for Fast Comparison of â ⁻¹ ,4640,000 Phage Genomic Sequences and Host-Centric Visualization Using Genomic Network Graphs. Phage, 2021, 2, 194-203.	0.8	14
132	α-cyanobacteria possessing form IA RuBisCO globally dominate aquatic habitats. ISME Journal, 2022, 16, 2421-2432.	4.4	14
133	A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution. Current Biology, 2021, 31, 3199-3206.e4.	1.8	13
134	Aspects of Marine Cyanobacterial Nitrogen Physiology and Connection to the Nitrogen Cycle. , 2008, , 1073-1095.		12
135	Phytoplankton community structure in a high-nutrient, low-chlorophyll region of the eastern Pacific Subantarctic region during winter-mixed and summer-stratified conditions. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 69, 1-11.	0.6	12
136	Manganese Is Essential for PlcP Metallophosphoesterase Activity Involved in Lipid Remodeling in Abundant Marine Heterotrophic Bacteria. Applied and Environmental Microbiology, 2018, 84, .	1.4	12
137	A new family of "megaphages―abundant in the marine environment. ISME Communications, 2021, 1, .	1.7	12
138	Spontaneous Deletion of an "ORFanage―Region Facilitates Host Adaptation in a "Photosynthetic― Cyanophage. PLoS ONE, 2015, 10, e0132642.	1.1	11
139	Unexpected evolutionary proximity of eukaryotic and cyanobacterial enzymes responsible for biosynthesis of retinoic acid and its oxidation. Molecular BioSystems, 2014, 10, 380.	2.9	10
140	Phosphate Acquisition Components of the <i>Myxococcus xanthus</i> Pho Regulon Are Regulated by both Phosphate Availability and Development. Journal of Bacteriology, 2008, 190, 1997-2003.	1.0	8
141	A novel class of sulfur-containing aminolipids widespread in marine roseobacters. ISME Journal, 2021, 15, 2440-2453.	4.4	8
142	Lipidomic Analysis of Roseobacters of the Pelagic RCA Cluster and Their Response to Phosphorus Limitation. Frontiers in Microbiology, 2020, 11, 552135.	1.5	7
143	Comparative Thermophysiology of Marine Synechococcus CRD1 Strains Isolated From Different Thermal Niches in Iron-Depleted Areas. Frontiers in Microbiology, 2022, 13, .	1.5	7
144	A single sensor controls large variations in zinc quotas in a marine cyanobacterium. Nature Chemical Biology, 2022, 18, 869-877.	3.9	7

#	Article	IF	CITATIONS
145	Stimulation of Distinct Rhizosphere Bacteria Drives Phosphorus and Nitrogen Mineralization in Oilseed Rape under Field Conditions. MSystems, 2022, 7, .	1.7	7
146	Microbial uptake dynamics of choline and glycine betaine in coastal seawater. Limnology and Oceanography, 2022, 67, 1052-1064.	1.6	6
147	Cellâ€specific CO ₂ fixation rates of two distinct groups of plastidic protists in the <scp>A</scp> tlantic <scp>O</scp> cean remain unchanged after nutrient addition. Environmental Microbiology Reports, 2015, 7, 211-218.	1.0	5
148	The evolutionary origins of peroxynitrite signalling. Biochemical and Biophysical Research Communications, 2021, 580, 107-112.	1.0	5
149	Assessing amino acid uptake by phototrophic nanoflagellates in nonaxenic cultures using flow cytometric sorting. FEMS Microbiology Letters, 2009, 298, 166-173.	0.7	4
150	Draft Genome Sequence of Bacteriophage vB_Eco_swan01. Genome Announcements, 2017, 5, .	0.8	4
151	Relative stability of ploidy in a marine <i>Synechococcus</i> across various growth conditions. Environmental Microbiology Reports, 2018, 10, 428-432.	1.0	4
152	Targeted Genomics of Flow Cytometrically Sorted Cultured and Uncultured Microbial Groups. Methods in Molecular Biology, 2014, 1096, 203-212.	0.4	4
153	2â€Aminoethylphosphonate utilization in <i>Pseudomonas putida</i> <scp>BIRD </scp> â€1 is controlled by multiple master regulators. Environmental Microbiology, 2022, 24, 1902-1917.	1.8	4
154	Being Selective in the <i>Prochlorococcus</i> Collective. Science, 2014, 344, 366-367.	6.0	3
155	A metallothionein from an open ocean cyanobacterium removes zinc from the sensor protein controlling its transcription. Journal of Inorganic Biochemistry, 2022, 230, 111755.	1.5	2
156	Membrane lipid renovation in <i>Pseudomonas aeruginosa</i> ―implications for phage therapy?. Environmental Microbiology, 2022, 24, 4533-4546.	1.8	2
157	A Sample-to-Sequence Protocol for Genus Targeted Transcriptomic Profiling: Application to Marine Synechococcus. Frontiers in Microbiology, 2016, 7, 1592.	1.5	1