List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/866178/publications.pdf Version: 2024-02-01

KIM EKROOS

#	Article	IF	CITATIONS
1	Clinical lipidomics – A community-driven roadmap to translate research into clinical applications. Journal of Mass Spectrometry and Advances in the Clinical Lab, 2022, 24, 1-4.	1.3	15
2	Validation of a multiplexed and targeted lipidomics assay for accurate quantification of lipidomes. Journal of Lipid Research, 2022, 63, 100218.	2.0	6
3	High-defined quantitative snapshots of the ganglioside lipidome using high resolution ion mobility SLIM assisted shotgun lipidomics. Analytica Chimica Acta, 2021, 1146, 77-87.	2.6	28
4	Quality control requirements for the correct annotation of lipidomics data. Nature Communications, 2021, 12, 4771.	5.8	54
5	Comparison of Kit-Based Metabolomics with Other Methodologies in a Large Cohort, towards Establishing Reference Values. Metabolites, 2021, 11, 652.	1.3	10
6	Development of an On-Tissue Derivatization Method for MALDI Mass Spectrometry Imaging of Bioactive Lipids Containing Phosphate Monoester Using Phos-tag. Analytical Chemistry, 2021, 93, 3867-3875.	3.2	23
7	Recommendations for good practice in MS-based lipidomics. Journal of Lipid Research, 2021, 62, 100138.	2.0	85
8	Lipidomics: Current state of the art in a fast moving field. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1466.	6.6	71
9	Impact of ion suppression by sample cap liners in lipidomics. Analytica Chimica Acta, 2020, 1137, 136-142.	2.6	5
10	Correction of Isobaric Overlap Resulting from Sodiated Ions in Lipidomics. Analytical Chemistry, 2020, 92, 10966-10970.	3.2	17
11	Ceramide ratios are affected by cigarette smoke but not heat-not-burn or e-vapor aerosols across four independent mouse studies. Life Sciences, 2020, 263, 118753.	2.0	9
12	Lipidomic analysis. Analytical and Bioanalytical Chemistry, 2020, 412, 2187-2189.	1.9	11
13	Lipid-based biomarkers for CVD, COPD, and aging – A translational perspective. Progress in Lipid Research, 2020, 78, 101030.	5.3	22
14	hiPSCâ€derived hepatocytes closely mimic the lipid profile of primary hepatocytes: A future personalised cell model for studying the lipid metabolism of the liver. Journal of Cellular Physiology, 2019, 234, 3744-3761.	2.0	16
15	Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics. Angewandte Chemie, 2019, 131, 6560-6569.	1.6	12
16	Reshaping Lipid Biochemistry by Pushing Barriers in Structural Lipidomics. Angewandte Chemie - International Edition, 2019, 58, 6492-6501.	7.2	75
17	Lipidomic Analysis. Analytical Chemistry, 2018, 90, 4249-4257.	3.2	174
18	Untargeted lipidomic analysis to broadly characterize the effects of pathogenic and non-pathogenic staphylococci on mammalian lipids. PLoS ONE, 2018, 13, e0206606.	1.1	13

#	Article	IF	CITATIONS
19	Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. International Journal of Molecular Sciences, 2018, 19, 2775.	1.8	35
20	MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. Journal of Lipid Research, 2018, 59, 2001-2017.	2.0	231
21	Reporting of lipidomics data should be standardized. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 747-751.	1.2	77
22	Lipidomic profiling of patient-specific ipsc-derived hepatocyte-like cells (HLCs). Atherosclerosis, 2017, 263, e104.	0.4	1
23	Lipidomic profiling of patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. DMM Disease Models and Mechanisms, 2017, 10, 1141-1153.	1.2	20
24	Alterations in Serum Polyunsaturated Fatty Acids and Eicosanoids in Patients with Mild to Moderate Chronic Obstructive Pulmonary Disease (COPD). International Journal of Molecular Sciences, 2016, 17, 1583.	1.8	34
25	Determining the Turnover of Glycosphingolipid Species by Stable-Isotope Tracer Lipidomics. Journal of Molecular Biology, 2016, 428, 4856-4866.	2.0	32
26	Gender, Contraceptives and Individual Metabolic Predisposition Shape a Healthy Plasma Lipidome. Scientific Reports, 2016, 6, 27710.	1.6	91
27	Comprehensive systems biology analysis of a 7-month cigarette smoke inhalation study in C57BL/6 mice. Scientific Data, 2016, 3, 150077.	2.4	25
28	Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters. Data in Brief, 2016, 7, 1171-1174.	0.5	15
29	Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. European Heart Journal, 2016, 37, 1967-1976.	1.0	433
30	Circulating Ceramides Predict Cardiovascular Outcomes in the Population-Based FINRISK 2002 Cohort. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2424-2430.	1.1	249
31	Alcohol produces distinct hepatic lipidome and eicosanoid signature in lean and obese. Journal of Lipid Research, 2016, 57, 1017-1028.	2.0	21
32	Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 281-288.	1.4	76
33	Effects of Cigarette Smoke, Cessation, and Switching to Two Heat-Not-Burn Tobacco Products on Lung Lipid Metabolism in <i>C57BL/6</i> and <i>Apoe</i> scup>â^'/â''Mice—An Integrative Systems Toxicology Analysis. Toxicological Sciences, 2016, 149, 441-457.	1.4	49
34	Development and validation of a high-throughput LC–MS/MS assay for routine measurement of molecular ceramides. Analytical and Bioanalytical Chemistry, 2016, 408, 3475-3483.	1.9	61
35	Cellular effects of fluorodeoxyglucose: Global changes in the lipidome and alteration in in in intracellular transport. Oncotarget, 2016, 7, 79885-79900.	0.8	5
36	Identification and Annotation of Lipid Species in Metabolomics Studies Need Improvement. Clinical Chemistry, 2015, 61, 1542-1544.	1.5	30

#	Article	IF	CITATIONS
37	Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: Results of the ATHEROREMO-IVUS study. Atherosclerosis, 2015, 243, 560-566.	0.4	120
38	The Ether Lipid Precursor Hexadecylglycerol Stimulates the Release and Changes the Composition of Exosomes Derived from PC-3 Cells. Journal of Biological Chemistry, 2015, 290, 4225-4237.	1.6	102
39	Three differently generated salmon protein hydrolysates reveal opposite effects on hepatic lipid metabolism in mice fed a high-fat diet. Food Chemistry, 2015, 183, 101-110.	4.2	19
40	Quantitative lysophospholipidomics in human plasma and skin by LC–MS/MS. Analytical and Bioanalytical Chemistry, 2015, 407, 5091-5099.	1.9	32
41	Cell density-induced changes in lipid composition and intracellular trafficking. Cellular and Molecular Life Sciences, 2014, 71, 1097-1116.	2.4	42
42	Molecular Lipids Identify Cardiovascular Risk and Are Efficiently Lowered by Simvastatin and <i>PCSK9</i> Deficiency. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E45-E52.	1.8	180
43	Inhibition of macrophage fatty acid β-oxidation exacerbates palmitate-induced inflammatory and endoplasmic reticulum stress responses. Diabetologia, 2014, 57, 1067-1077.	2.9	64
44	High-content screening of yeast mutant libraries by shotgun lipidomics. Molecular BioSystems, 2014, 10, 1364-1376.	2.9	28
45	Differential Mobility Spectrometry-Driven Shotgun Lipidomics. Analytical Chemistry, 2014, 86, 9662-9669.	3.2	136
46	The ether lipid precursor hexadecylglycerol protects against Shiga toxins. Cellular and Molecular Life Sciences, 2014, 71, 4285-4300.	2.4	12
47	Beyond LDL-C lowering: Distinct molecular sphingolipids are good indicators of proprotein convertase subtilisin/kexin type 9 (PCSK9) deficiency. Atherosclerosis, 2013, 228, 380-385.	0.4	34
48	Statin Intolerance Can be Monitored by Plasma Eicosanoid Assays. Journal of Clinical Lipidology, 2013, 7, 265.	0.6	0
49	Long-Term Performance and Stability of Molecular Shotgun Lipidomic Analysis of Human Plasma Samples. Analytical Chemistry, 2013, 85, 8757-8763.	3.2	67
50	The Ether Lipid Precursor Hexadecylglycerol Causes Major Changes in the Lipidome of HEp-2 Cells. PLoS ONE, 2013, 8, e75904.	1.1	28
51	Analysis of Lipid Experiments (ALEX): A Software Framework for Analysis of High-Resolution Shotgun Lipidomics Data. PLoS ONE, 2013, 8, e79736.	1.1	142
52	Long- and Medium-Chain Fatty Acids Induce Insulin Resistance to a Similar Extent in Humans Despite Marked Differences in Muscle Fat Accumulation. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 208-216.	1.8	28
53	Statin Myalgia is Detected by a Single Lipid Marker. Journal of Clinical Lipidology, 2012, 6, 274-275.	0.6	0
54	Modulation of atherogenic lipidome by cigarette smoke in apolipoprotein E-deficient mice. Atherosclerosis, 2012, 225, 328-334.	0.4	50

#	Article	IF	CITATIONS
55	Shotgun Lipidomics by Sequential Precursor Ion Fragmentation on a Hybrid Quadrupole Time-of-Flight Mass Spectrometer. Metabolites, 2012, 2, 195-213.	1.3	103
56	Predicting Statin Induced Muscle Toxicity. Journal of Clinical Lipidology, 2011, 5, 239-240.	0.6	0
57	High throughput quantitative molecular lipidomics. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 925-934.	1.2	143
58	Lipidomics: a new asset to the clinical lipidology tool-kit. Clinical Lipidology, 2011, 6, 21-23.	0.4	0
59	The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction. Journal of Clinical Investigation, 2011, 121, 2625-2640.	3.9	133
60	Lipidomics: A Tool for Studies of Atherosclerosis. Current Atherosclerosis Reports, 2010, 12, 273-281.	2.0	94
61	Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2136-2141.	3.3	932
62	ApoCIII-Enriched LDL in Type 2 Diabetes Displays Altered Lipid Composition, Increased Susceptibility for Sphingomyelinase, and Increased Binding to Biglycan. Diabetes, 2009, 58, 2018-2026.	0.3	116
63	High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 2664-2672.	1.2	197
64	Ximelagatran increases membrane fluidity and changes membrane lipid composition in primary human hepatocytes. Toxicology in Vitro, 2009, 23, 1305-1310.	1.1	30
65	Informatics and computational strategies for the study of lipids. Molecular BioSystems, 2008, 4, 121-127.	2.9	189
66	Differences in membrane acyl phospholipid composition between an endothermic mammal and an ectothermic reptile are not limited to any phospholipid class. Journal of Experimental Biology, 2007, 210, 3440-3450.	0.8	27
67	Hepatic PGC-1β Overexpression Induces Combined Hyperlipidemia and Modulates the Response to PPARα Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2707-2713.	1.1	43
68	Automated Identification and Quantification of Glycerophospholipid Molecular Species by Multiple Precursor Ion Scanning. Analytical Chemistry, 2006, 78, 6202-6214.	3.2	379
69	Liverâ€directed overexpression of mitochondrial glycerolâ€3â€phosphate acyltransferase results in hepatic steatosis, increased triacylglycerol secretion and reduced fatty acid oxidation. FASEB Journal, 2006, 20, 434-443.	0.2	108
70	Polyene-lipids: A new tool to image lipids. Nature Methods, 2005, 2, 39-45.	9.0	169
71	Resistance of cell membranes to different detergents. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5795-5800.	3.3	598
72	Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. Journal of Lipid Research, 2003, 44, 2181-2192.	2.0	277

#	Article	IF	CITATIONS
73	Quantitative Profiling of Phospholipids by Multiple Precursor Ion Scanning on a Hybrid Quadrupole Time-of-Flight Mass Spectrometer. Analytical Chemistry, 2002, 74, 941-949.	3.2	298