DeLisa Fairweather

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8661687/publications.pdf

Version: 2024-02-01

97 papers 8,926 citations

43 h-index 71532 76 g-index

106 all docs

106 docs citations

106 times ranked 12576 citing authors

#	Article	IF	CITATIONS
1	Concerns about estimating relative risk of death associated with convalescent plasma for COVID-19. Nature Medicine, 2022, 28, 51-52.	15.2	4
2	Autoimmune heart disease. , 2022, , 167-188.		0
3	Myocarditis and Pericarditis., 2021,,.		1
4	A Case-Control Study of Peripartum Cardiomyopathy Using the Rochester Epidemiology Project. Journal of Cardiac Failure, 2021, 27, 132-142.	0.7	5
5	Convalescent Plasma Antibody Levels and the Risk of Death from Covid-19. New England Journal of Medicine, 2021, 384, 1015-1027.	13.9	438
6	Sex Differences, Genetic and Environmental Influences on Dilated Cardiomyopathy. Journal of Clinical Medicine, 2021, 10, 2289.	1.0	19
7	Platforms for Personalized Polytherapeutics Discovery in COVID-19. Journal of Molecular Biology, 2021, 433, 166945.	2.0	4
8	The Effect of Convalescent Plasma Therapy on Mortality Among Patients With COVID-19: Systematic Review and Meta-analysis. Mayo Clinic Proceedings, 2021, 96, 1262-1275.	1.4	129
9	Convalescent Plasma Therapy for COVID-19: A Graphical Mosaic of the Worldwide Evidence. Frontiers in Medicine, 2021, 8, 684151.	1.2	50
10	COVID-19 Convalescent Plasma Is More than Neutralizing Antibodies: A Narrative Review of Potential Beneficial and Detrimental Co-Factors. Viruses, 2021, 13, 1594.	1.5	31
11	Sex-Specific Effects of Plastic Caging in Murine Viral Myocarditis. International Journal of Molecular Sciences, 2021, 22, 8834.	1.8	7
12	In Reply—How Safe Is COVID-19 Convalescent Plasma?. Mayo Clinic Proceedings, 2021, 96, 2281-2282.	1.4	5
13	Mortality in individuals treated with COVID-19 convalescent plasma varies with the geographic provenance of donors. Nature Communications, 2021, 12, 4864.	5.8	49
14	Trpc6 Promotes Doxorubicin-Induced Cardiomyopathy in Male Mice With Pleiotropic Differences Between Males and Females. Frontiers in Cardiovascular Medicine, 2021, 8, 757784.	1.1	8
15	The Role of Disease Severity and Demographics in the Clinical Course of COVID-19 Patients Treated With Convalescent Plasma. Frontiers in Medicine, 2021, 8, 707895.	1.2	3
16	Access to and safety of COVID-19 convalescent plasma in the United States Expanded Access Program: A national registry study. PLoS Medicine, 2021, 18, e1003872.	3.9	43
17	Using Novel Biomarkers to Predict Chemo-Induced Cardiovascular Toxicity in Patients with Breast Cancer. Journal of Cardiac Failure, 2020, 26, S16.	0.7	0
18	Sera SST2 Levels Differ by Sex and Age for Myocardial Infarct and Cardiomyopathy. Journal of Cardiac Failure, 2020, 26, S20-S21.	0.7	0

#	Article	IF	CITATIONS
19	Vitamin D Binding Protein as a Potential Biomarker for Heart Failure in Myocarditis: Translational Animal Model Reveals Mechanism. Journal of Cardiac Failure, 2020, 26, S96-S97.	0.7	0
20	Safety Update. Mayo Clinic Proceedings, 2020, 95, 1888-1897.	1.4	364
21	Association of Genetic Variants at TRPC6 With Chemotherapy-Related Heart Failure. Frontiers in Cardiovascular Medicine, 2020, 7, 142.	1.1	9
22	In Reply — Limitations of Safety Update on Convalescent Plasma Transfusion in COVID-19 Patients. Mayo Clinic Proceedings, 2020, 95, 2802-2803.	1.4	18
23	Sex differences in inflammation, redox biology, mitochondria and autoimmunity. Redox Biology, 2020, 31, 101482.	3.9	101
24	Myoglobin for Detection of High-Risk Patients with Acute Myocarditis. Journal of Cardiovascular Translational Research, 2020, 13, 853-863.	1.1	15
25	Early safety indicators of COVID-19 convalescent plasma in 5000 patients. Journal of Clinical Investigation, 2020, 130, 4791-4797.	3.9	386
26	Using novel biomarkers to predict chemotherapy-induced cardiovascular toxicity in patients with breast cancer Journal of Clinical Oncology, 2020, 38, e13002-e13002.	0.8	0
27	Autoimmune Myocarditis: Animal Models. , 2020, , 111-127.		2
28	Pulmonary arterial stiffness assessed by cardiovascular magnetic resonance imaging is a predictor of mild pulmonary arterial hypertension. International Journal of Cardiovascular Imaging, 2019, 35, 1881-1892.	0.7	26
29	Sex Differences in Doxorubicin-Induced Cardiomyopathy: TRPC6 Novel Therapeutic Target. Journal of Cardiac Failure, 2019, 25, S110-S111.	0.7	1
30	BPA Alters Estrogen Receptor Expression in the Heart After Viral Infection Activating Cardiac Mast Cells and T Cells Leading to Perimyocarditis and Fibrosis. Frontiers in Endocrinology, 2019, 10, 598.	1.5	45
31	Self-reactive CD4+ IL-3+ T cells amplify autoimmune inflammation in myocarditis by inciting monocyte chemotaxis. Journal of Experimental Medicine, 2019, 216, 369-383.	4.2	34
32	Dilated cardiomyopathy. Nature Reviews Disease Primers, 2019, 5, 32.	18.1	347
33	Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology, 2019, 70, 1457-1469.	3.6	547
34	3341 Sex Differences in Vitamin D and Urinary Stone Disease. Journal of Clinical and Translational Science, 2019, 3, 54-54.	0.3	0
35	Premenopausal Purified Exosome Products from Women Protect against Male Dominant Cardiomyopathies Myocarditis and DCM. Journal of Cardiac Failure, 2019, 25, S111.	0.7	0
36	Elevated Sera sST2 Is Associated With Heart Failure in Men â‰\$0ÂYears Old With Myocarditis. Journal of the American Heart Association, 2019, 8, e008968.	1.6	62

3

#	Article	IF	CITATIONS
37	Elevated Sera sST2 Predicts Heart Failure in Men Under the Age of 50 with Clinically Suspected Myocarditis. Journal of Cardiac Failure, 2018, 24, S2.	0.7	О
38	Prevention of Myocarditis Using Regenerative Medicine Therapy. Journal of Cardiac Failure, 2018, 24, S80.	0.7	0
39	Sex differences in pulmonary arterial hypertension: role of infection and autoimmunity in the pathogenesis of disease. Biology of Sex Differences, 2018, 9, 15.	1.8	60
40	Abstract 386: Sex Differences in Vitamin D Alter Inflammation During Heart Disease. Circulation Research, 2018, 123, .	2.0	0
41	Sex Determines Cardiac Myocyte Stretch and Relaxation. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	3
42	Genome-wide association study of cardiotoxicity in the NCCTG N9831 (Alliance) adjuvant trastuzumab trial. Pharmacogenetics and Genomics, 2017, 27, 378-385.	0.7	50
43	Sex Hormone Receptor Expression in the Immune System. , 2016, , 45-60.		18
44	Viral Myocarditis and Dilated Cardiomyopathy: Mechanisms of Cardiac Injury, Inflammation, and Fibrosis., 2016,, 149-159.		2
45	Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight, 2016, 1, .	2.3	155
46	Sex differences in Sjögren's syndrome: a comprehensive review of immune mechanisms. Biology of Sex Differences, 2015, 6, 19.	1.8	81
47	Autoimmune Skin Diseases: Role of Sex Hormones, Vitamin D, and Menopause., 2015, , 359-381.		6
48	Low-dose mercury heightens early innate response to coxsackievirus infection in female mice. Inflammation Research, 2015, 64, 31-40.	1.6	6
49	Nano-scale treatment for a macro-scale disease: nanoparticle-delivered siRNA silences CCR2 and treats myocarditis. European Heart Journal, 2015, 36, 1434-1436.	1.0	11
50	Unresolved issues in theories of autoimmune disease using myocarditis as a framework. Journal of Theoretical Biology, 2015, 375, 101-123.	0.8	60
51	Arsenic exposure and hepatitis E virus infection during pregnancy. Environmental Research, 2015, 142, 273-280.	3.7	33
52	Biomarker and more: can translocator protein 18 kDa predict recovery from brain injury and myocarditis?. Biomarkers in Medicine, 2014, 8, 605-607.	0.6	6
53	Sex Differences in Translocator Protein 18ÂkDa (TSPO) in the Heart: Implications for Imaging Myocardial Inflammation. Journal of Cardiovascular Translational Research, 2014, 7, 192-202.	1.1	29
54	Complexities in the Relationship Between Infection and Autoimmunity. Current Allergy and Asthma Reports, 2014, 14, 407.	2.4	80

#	Article	lF	Citations
55	Sex Differences in Inflammation during Atherosclerosis. Clinical Medicine Insights: Cardiology, 2014, 8s3, CMC.S17068.	0.6	105
56	Inflammation, Atherosclerosis and Coronary Artery Disease. Clinical Medicine Insights: Cardiology, 2014, 8s3, CMC.S39423.	0.6	28
57	Autoimmune Myocarditis, Valvulitis, and Cardiomyopathy. Current Protocols in Immunology, 2013, 101, Unit 15.14.1-51.	3.6	40
58	Sex and Gender Differences in Myocarditis and Dilated Cardiomyopathy. Current Problems in Cardiology, 2013, 38, 7-46.	1.1	253
59	TLR3 deficiency induces chronic inflammatory cardiomyopathy in resistant mice following coxsackievirus B3 infection: role for IL-4. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R267-R277.	0.9	40
60	Fatal Eosinophilic Myocarditis Develops in the Absence of IFN- \hat{I}^3 and IL-17A. Journal of Immunology, 2013, 191, 4038-4047.	0.4	53
61	We See Only What We Look For. Circulation: Cardiovascular Imaging, 2013, 6, 165-166.	1.3	13
62	Testosterone and interleukin- $1\hat{1}^2$ increase cardiac remodeling during coxsackievirus B3 myocarditis via serpin A 3n. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1726-H1736.	1.5	100
63	Th2 Regulation of Viral Myocarditis in Mice: Different Roles for TLR3 versus TRIF in Progression to Chronic Disease. Clinical and Developmental Immunology, 2012, 2012, 1-12.	3.3	82
64	Update on coxsackievirus B3 myocarditis. Current Opinion in Rheumatology, 2012, 24, 401-407.	2.0	127
65	IL-33 Independently Induces Eosinophilic Pericarditis and Cardiac Dilation. Circulation: Heart Failure, 2012, 5, 366-375.	1.6	51
66	Pathogenesis and diagnosis of myocarditis. Heart, 2012, 98, 835-840.	1.2	116
67	Republished: Pathogenesis and diagnosis of myocarditis. Postgraduate Medical Journal, 2012, 88, 539-544.	0.9	16
68	Autoimmune heart disease: role of sex hormones and autoantibodies in disease pathogenesis. Expert Review of Clinical Immunology, 2012, 8, 269-284.	1.3	59
69	Atherosclerosis and Inflammatory Heart Disease. Molecular and Integrative Toxicology, 2012, , 271-289.	0.5	0
70	The composition and signaling of the IL-35 receptor are unconventional. Nature Immunology, 2012, 13, 290-299.	7.0	371
71	Low-Dose Inorganic Mercury Increases Severity and Frequency of Chronic Coxsackievirus-Induced Autoimmune Myocarditis in Mice. Toxicological Sciences, 2012, 125, 134-143.	1.4	39
72	Biomarkers of Heart Failure in Myocarditis and Dilated Cardiomyopathy., 2011,,.		4

#	Article	lF	CITATIONS
73	The innate immune response to coxsackievirus B3 predicts progression to cardiovascular disease and heart failure in male mice. Biology of Sex Differences, 2011, 2, 2.	1.8	45
74	Ozone Exposure Induces Betaâ€Adrenergic Insensitivity. FASEB Journal, 2011, 25, 1000.21.	0.2	0
75	Sex Differences in a Murine Model of Sj \tilde{A} ¶gren's Syndrome. Annals of the New York Academy of Sciences, 2009, 1173, 378-383.	1.8	26
76	Gonadectomy of male BALB/c mice increases Tim-3+ alternatively activated M2 macrophages, Tim-3+ T cells, Th2 cells and Treg in the heart during acute coxsackievirus-induced myocarditis. Brain, Behavior, and Immunity, 2009, 23, 649-657.	2.0	119
77	Alternatively activated macrophages in infection and autoimmunity. Journal of Autoimmunity, 2009, 33, 222-230.	3.0	250
78	Cumulative Childhood Stress and Autoimmune Diseases in Adults. Psychosomatic Medicine, 2009, 71, 243-250.	1.3	616
79	Sex Differences in Autoimmune Disease from a Pathological Perspective. American Journal of Pathology, 2008, 173, 600-609.	1.9	476
80	Interleukin-13 Protects Against Experimental Autoimmune Myocarditis by Regulating Macrophage Differentiation. American Journal of Pathology, 2008, 172, 1195-1208.	1.9	138
81	Mast Cells and Inflammatory Heart Disease: Potential Drug Targets. Cardiovascular & Hematological Disorders Drug Targets, 2008, 8, 80-90.	0.2	36
82	Cutting Edge: Cross-Regulation by TLR4 and T cell Ig Mucin-3 Determines Sex Differences in Inflammatory Heart Disease. Journal of Immunology, 2007, 178, 6710-6714.	0.4	190
83	Coxsackievirus-induced myocarditis in mice: A model of autoimmune disease for studying immunotoxicity. Methods, 2007, 41, 118-122.	1.9	172
84	The protective role of ILâ€13 in Experimental Autoimmune Myocarditis. FASEB Journal, 2007, 21, A128.	0.2	0
85	Sex differences in coxsackievirus B3-induced myocarditis: $\rm IL-12R\hat{I}^21$ signaling and $\rm IFN-\hat{I}^3$ increase inflammation in males independent from STAT4. Brain Research, 2006, 1126, 139-147.	1.1	80
86	Cutting Edge: T Cell Ig Mucin-3 Reduces Inflammatory Heart Disease by Increasing CTLA-4 during Innate Immunity. Journal of Immunology, 2006, 176, 6411-6415.	0.4	128
87	Complement Receptor 1 and 2 Deficiency Increases Coxsackievirus B3-Induced Myocarditis, Dilated Cardiomyopathy, and Heart Failure by Increasing Macrophages, IL- $1^{\hat{1}^2}$, and Immune Complex Deposition in the Heart. Journal of Immunology, 2006, 176, 3516-3524.	0.4	71
88	Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus-induced myocarditis. Reviews in Medical Virology, 2005, 15, 17-27.	3.9	142
89	IL-12 Protects against Coxsackievirus B3-Induced Myocarditis by Increasing IFN-Î ³ and Macrophage and Neutrophil Populations in the Heart. Journal of Immunology, 2005, 174, 261-269.	0.4	127
90	Women and Autoimmune Diseases1. Emerging Infectious Diseases, 2004, 10, 2005-2011.	2.0	179

#	Article	IF	CITATIONS
91	Mast Cells and Innate Cytokines are Associated with Susceptibility to Autoimmune Heart Disease Following Coxsackievirus B3 Infection. Autoimmunity, 2004, 37, 131-145.	1.2	98
92	Interferon- \hat{l}^3 Protects against Chronic Viral Myocarditis by Reducing Mast Cell Degranulation, Fibrosis, and the Profibrotic Cytokines Transforming Growth Factor- \hat{l}^2 1, Interleukin- $1\hat{l}^2$, and Interleukin-4 in the Heart. American Journal of Pathology, 2004, 165, 1883-1894.	1.9	176
93	IL-12 Receptor \hat{l}^21 and Toll-Like Receptor 4 Increase IL- $1\hat{l}^2$ - and IL-18-Associated Myocarditis and Coxsackievirus Replication. Journal of Immunology, 2003, 170, 4731-4737.	0.4	221
94	From Infection to Autoimmunity. Journal of Autoimmunity, 2001, 16, 175-186.	3.0	294
95	Contribution of the innate immune system to autoimmune myocarditis: a role for complement. Nature Immunology, 2001, 2, 739-745.	7.0	161
96	Convalescent Plasma Therapy for COVID-19: A Graphical Mosaic of the Worldwide Evidence. SSRN Electronic Journal, $0, , .$	0.4	2
97	The Impact of a Group Telemedicine Program for Chronic Disease: A Retrospective Cohort Survey Study on Hypermobile Ehlers-Danlos Syndrome and Hypermobility Spectrum Disorder. Telemedicine Journal and E-Health, 0, , .	1.6	1