
Maxim F Gelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8661291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Calculation of Time- and Frequency-Resolved Four-Wave-Mixing Signals. Accounts of Chemical Research, 2009, 42, 1290-1298.	7.6	87
2	Analysis of cross peaks in two-dimensional electronic photon-echo spectroscopy for simple models with vibrations and dissipation. Journal of Chemical Physics, 2007, 126, 074314.	1.2	85
3	Efficient method for the calculation of time- and frequency-resolved four-wave mixing signals and its application to photon-echo spectroscopy. Journal of Chemical Physics, 2005, 123, 164112.	1.2	80
4	Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach. Journal of Chemical Physics, 2016, 145, 224101.	1.2	58
5	Thermodynamics of a subensemble of a canonical ensemble. Physical Review E, 2009, 79, 051121.	0.8	54
6	Simulation of Quantum Dynamics of Excitonic Systems at Finite Temperature: an efficient method based on Thermo Field Dynamics. Scientific Reports, 2017, 7, 9127.	1.6	50
7	Ultrafast Relaxation Dynamics in Zinc Tetraphenylporphyrin Surface-Mounted Metal Organic Framework. Journal of Physical Chemistry C, 2018, 122, 50-61.	1.5	48
8	Effects of intense femtosecond pumping on ultrafast electronic-vibrational dynamics in molecular systems with relaxation. Journal of Chemical Physics, 2008, 129, 214303.	1.2	45
9	Time- and frequency-resolved fluorescence spectra of nonadiabatic dissipative systems: What photons can tell us. Journal of Chemical Physics, 2005, 122, 134504.	1.2	44
10	Polaron dynamics in two-dimensional photon-echo spectroscopy of molecular rings. Journal of Chemical Physics, 2013, 139, 104103.	1.2	42
11	Dissipative dynamics at conical intersections: simulations with the hierarchy equations of motion method. Faraday Discussions, 2016, 194, 61-80.	1.6	39
12	Davydov <i>Ansatz</i> as an efficient tool for the simulation of nonlinear optical response of molecular aggregates. Journal of Chemical Physics, 2015, 142, 212448.	1.2	37
13	Finite temperature quantum dynamics of complex systems: Integrating <scp>thermoâ€field</scp> theories and <scp>tensorâ€train</scp> methods. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1539.	6.2	35
14	Signatures of conical intersections in two-dimensional electronic spectra. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 124019.	0.6	32
15	Interference of Interchromophoric Energy-Transfer Pathways in π-Conjugated Macrocycles. Journal of Physical Chemistry Letters, 2016, 7, 4936-4944.	2.1	32
16	Multimode quantum dynamics with multiple Davydov D2 trial states: Application to a 24-dimensional conical intersection model. Journal of Chemical Physics, 2019, 150, 024101.	1.2	32
17	Simulation of femtosecond two-dimensional electronic spectra of conical intersections. Journal of Chemical Physics, 2015, 143, 074308.	1.2	29
18	Multi-faceted spectroscopic mapping of ultrafast nonadiabatic dynamics near conical intersections: A computational study. Journal of Chemical Physics, 2020, 153, 174111.	1.2	29

#	Article	IF	CITATIONS
19	Manipulating electronic couplings and nonadiabatic nuclear dynamics with strong laser pulses. Journal of Chemical Physics, 2009, 131, 124505.	1.2	27
20	Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra. Journal of Chemical Physics, 2017, 147, 144103.	1.2	26
21	Temperature effects on singlet fission dynamics mediated by a conical intersection. Journal of Chemical Physics, 2020, 153, 194106.	1.2	25
22	Theory of femtosecond coherent double-pump single-molecule spectroscopy: Application to light harvesting complexes. Journal of Chemical Physics, 2015, 142, 164106.	1.2	24
23	Calculation of third-order signals via driven Schrödinger equations: General results and application to electronic 2D photon echo spectroscopy. Chemical Physics, 2013, 422, 53-62.	0.9	23
24	Dynamics of disordered Tavis–Cummings and Holstein–Tavis–Cummings models. Journal of Chemical Physics, 2022, 156, 024102.	1.2	23
25	Time-resolved spontaneous emission beyond the doorway–window approximation. Chemical Physics, 2004, 301, 129-139.	0.9	22
26	Analysis of vibrational coherences in homodyne and two-dimensional heterodyne photon-echo spectra of Nile Blue. Chemical Physics, 2007, 341, 113-122.	0.9	22
27	Efficient calculation of the polarization induced by N coherent laser pulses. Journal of Chemical Physics, 2009, 131, 194103.	1.2	22
28	Strong and Long Makes Short: Strong-Pump Strong-Probe Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 114-119.	2.1	22
29	Bath-induced correlations and relaxation of vibronic dimers. Journal of Chemical Physics, 2012, 136, 034507.	1.2	22
30	Strong-pump strong-probe spectroscopy: effects of higher excited electronic states. Physical Chemistry Chemical Physics, 2013, 15, 8119.	1.3	22
31	The hierarchy of Davydov's Ansäze and its applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	22
32	Mapping of Wave Packet Dynamics at Conical Intersections by Time- and Frequency-Resolved Fluorescence Spectroscopy: A Computational Study. Journal of Physical Chemistry Letters, 2019, 10, 5873-5880.	2.1	21
33	Exact quantum master equation for a molecular aggregate coupled to a harmonic bath. Physical Review E, 2011, 84, 041139.	0.8	20
34	Monitoring of singlet fission via two-dimensional photon-echo and transient-absorption spectroscopy: Simulations by multiple Davydov trial states. Journal of Chemical Physics, 2019, 151, 114102.	1.2	20
35	Simulation of Nonlinear Femtosecond Signals at Finite Temperature via a Thermo Field Dynamics-Tensor Train Method: General Theory and Application to Time- and Frequency-Resolved Fluorescence of the Fenna–Matthews–Olson Complex. Journal of Chemical Theory and Computation, 2021. 17. 4316-4331.	2.3	20
36	Optical <i>N</i> -Wave-Mixing Spectroscopy with Strong and Temporally Well-Separated Pulses: The Doorwayâ^'Window Representation. Journal of Physical Chemistry B, 2011, 115, 5648-5658.	1.2	19

#	Article	IF	CITATIONS
37	Thermal Schrödinger Equation: Efficient Tool for Simulation of Manyâ€Body Quantum Dynamics at Finite Temperature. Annalen Der Physik, 2017, 529, 1700200.	0.9	19
38	Analysis of transient-absorption pump-probe signals of nonadiabatic dissipative systems: "Ideal―and "real―spectra. Journal of Chemical Physics, 2019, 150, 204102.	1.2	19
39	Origin of Unexpectedly Simple Oscillatory Responses in the Excited-State Dynamics of Disordered Molecular Aggregates. Journal of Physical Chemistry Letters, 2019, 10, 2806-2810. Dynamics of the spin-boson model: A comparison of the multiple Davydov <mml:math< td=""><td>2.1</td><td>19</td></mml:math<>	2.1	19
40	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si45.gif" overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">D</mml:mi </mml:mrow><mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow>mathvariant="normal">D</mml:mrow><mml:mrow><mml:mrow><mml:mn>1.5</mml:mn></mml:mrow><td>> < mml:m ub> < mml:</td><td>o¹⁷,no>,</td></mml:mrow></mml:msub></mml:mrow>	> < mml:m ub> < mml:	o ¹⁷ ,no>,
41	mathvariant-"normal">D<. Chemical Physics, 2018, 515, 108,118 Ab Initio Surface-Hopping Simulation of Femtosecond Transient-Absorption Pump–Probe Signals of Nonadiabatic Excited-State Dynamics Using the Doorway–Window Representation. Journal of Chemical Theory and Computation, 2021, 17, 2394-2408.	2.3	16
42	Resonant Femtosecond Stimulated Raman Spectra: Theory and Simulations. Journal of Physical Chemistry A, 2016, 120, 3286-3295.	1.1	15
43	Dynamics of a one-dimensional Holstein polaron: The multiconfigurational Ehrenfest method. Journal of Chemical Physics, 2019, 151, 244116.	1.2	15
44	Simulation of Time- and Frequency-Resolved Four-Wave-Mixing Signals at Finite Temperatures: A Thermo-Field Dynamics Approach. Journal of Chemical Theory and Computation, 2021, 17, 4359-4373.	2.3	15
45	Generalized Huang-Rhys factors for molecular aggregates. Chemical Physics, 2020, 528, 110495.	0.9	14
46	Domain of validity of the perturbative approach to femtosecond optical spectroscopy. Journal of Chemical Physics, 2013, 139, 224107.	1.2	13
47	The Generalized Coherent State ansatz: Application to quantum electron-vibrational dynamics. Chemical Physics, 2016, 481, 91-98.	0.9	13
48	Efficient orientational averaging of nonlinear optical signals in multi-chromophore systems. Journal of Chemical Physics, 2017, 147, 044114.	1.2	13
49	Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. I. Weak-field regime. Physical Chemistry Chemical Physics, 2017, 19, 32296-32306.	1.3	13
50	Theory helps experiment to reveal VOCs in human breath. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 258, 119785.	2.0	13
51	Effects of high pulse intensity and chirp in two-dimensional electronic spectroscopy of an atomic vapor. Optics Express, 2020, 28, 25806.	1.7	13
52	Ultrafast Internal Conversion Dynamics through the on-the-Fly Simulation of Transient Absorption Pump–Probe Spectra with Different Electronic Structure Methods. Journal of Physical Chemistry Letters, 2022, 13, 661-668.	2.1	13
53	Time domain fingerprints of a ?perpendicular? rotational Raman band: formic acid studied by femtosecond degenerate four-wave mixing. Journal of Raman Spectroscopy, 2003, 34, 1045-1050.	1.2	12
54	Strong field effects in rotational femtosecond degenerate four-wave mixing. Journal of Chemical Physics, 2010, 132, 134301.	1.2	12

#	Article	IF	CITATIONS
55	Theoretical aspects of femtosecond double-pump single-molecule spectroscopy. II. Strong-field regime. Physical Chemistry Chemical Physics, 2017, 19, 32307-32319.	1.3	12
56	Enhanced S ₂ Fluorescence from a Free-Base Tetraphenylporphyrin Surface-Mounted Metal Organic Framework. Journal of Physical Chemistry C, 2018, 122, 23321-23328.	1.5	12
57	Efficient simulation of time- and frequency-resolved four-wave-mixing signals with a multiconfigurational Ehrenfest approach. Journal of Chemical Physics, 2021, 154, 054105.	1.2	12
58	Spectral Fingerprint of Excited-State Energy Transfer in Dendrimers through Polarization-Sensitive Transient-Absorption Pump–Probe Signals: On-the-Fly Nonadiabatic Dynamics Simulations. Journal of Physical Chemistry Letters, 2021, 12, 9710-9719.	2.1	12
59	Alternative view of two-dimensional spectroscopy. Journal of Chemical Physics, 2016, 144, 194104.	1.2	11
60	Nonperturbative response functions: A tool for the interpretation of four-wave-mixing signals beyond third order. Journal of Chemical Physics, 2017, 147, 234104.	1.2	11
61	First-passage time theory of activated rate chemical processes in electronic molecular junctions. Journal of Chemical Physics, 2021, 154, 114108.	1.2	11
62	Combined Surface-Hopping, Dyson Orbital, and B-Spline Approach for the Computation of Time-Resolved Photoelectron Spectroscopy Signals: The Internal Conversion in Pyrazine. Journal of Chemical Theory and Computation, 2021, 17, 5098-5109.	2.3	11
63	Efficient quantum dynamics simulations of complex molecular systems: A unified treatment of dynamic and static disorder. Journal of Chemical Physics, 2021, 155, 134102.	1.2	11
64	Pump-probe spectroscopy with strong pulses as a tool to enhance weak electronic transitions. Physical Review A, 2013, 87, .	1.0	10
65	Simple Recipes for Separating Excited-State Absorption and Cascading Signals by Polarization-Sensitive Measurements. Journal of Physical Chemistry A, 2013, 117, 11509-11513.	1.1	10
66	Ab Initio Quasiclassical Simulation of Femtosecond Time-Resolved Two-Dimensional Electronic Spectra of Pyrazine. Journal of Physical Chemistry Letters, 2021, 12, 11736-11744.	2.1	9
67	Accurate Simulation of Spectroscopic Signatures of Cavity-Assisted, Conical-Intersection-Controlled Singlet Fission Processes. Journal of Physical Chemistry Letters, 2022, 13, 4280-4288.	2.1	9
68	Simulation of Femtosecond Phase-Locked Double-Pump Signals of Individual Light-Harvesting Complexes LH2. Journal of Physical Chemistry Letters, 2018, 9, 4488-4494.	2.1	8
69	Pulse-shape effects in fifth-order multidimensional optical spectroscopy. Chemical Physics, 2018, 515, 119-128.	0.9	8
70	Vibronic coherences in light harvesting nanotubes: unravelling the role of dark states. Journal of Materials Chemistry C, 2022, 10, 7216-7226.	2.7	8
71	Resonant femtosecond stimulated Raman spectroscopy with an intense actinic pump pulse: Application to conical intersections. Journal of Chemical Physics, 2017, 146, 084105.	1.2	7
72	Quantum dynamics of vibrational energy flow in oscillator chains driven by anharmonic interactions. New Journal of Physics, 2020, 22, 123002.	1.2	7

#	Article	IF	CITATIONS
73	Engineering Cavity Singlet Fission in Rubrene. Journal of Physical Chemistry Letters, 2022, 13, 4090-4097.	2.1	7
74	Inertial effects in the Brownian dynamics with rigid constraints. Macromolecular Theory and Simulations, 1999, 8, 529-543.	0.6	6
75	Ultrafast carrier dynamics at organic donor–acceptor interfaces—a quantum-based assessment of the hopping model. JPhys Materials, 2022, 5, 024001.	1.8	6
76	Transient Phenomena in Time- and Frequency-Gated Spontaneous Emission. Journal of Physical Chemistry A, 2005, 109, 3587-3597.	1.1	5
77	Ring-puckering motion in cyclopentene studied by time-resolved rotational coherence spectroscopy and ab initio calculations. Physical Chemistry Chemical Physics, 2010, 12, 8190.	1.3	5
78	Orientational relaxation of a quantum linear rotor in a dissipative environment: Simulations with the hierarchical equations-of-motion method. Journal of Chemical Physics, 2019, 151, 034101.	1.2	5
79	Upper Excited State Photophysics of Malachite Green in Solution and Films. Journal of Physical Chemistry B, 2020, 124, 4293-4302.	1.2	5
80	Microscopic derivation of the Keilson–Storer master equation. Chemical Physics, 2015, 462, 35-40.	0.9	4
81	Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states. Journal of Chemical Physics, 2016, 144, 184307.	1.2	4
82	A model for dynamical solvent control of molecular junction electronic properties. Journal of Chemical Physics, 2021, 154, 044107.	1.2	4
83	Markovian master equation for a classical particle coupled with arbitrary strength to a harmonic bath. Journal of Chemical Physics, 2014, 141, 214109.	1.2	3
84	Electronic and non-adiabatic dynamics: general discussion. Faraday Discussions, 2016, 194, 209-257.	1.6	3
85	Towards efficient photochemistry from upper excited electronic states: detection of long S2 lifetime of perylene. Journal of Chemical Physics, 2021, 155, 191102.	1.2	3
86	Hierarchical Equations-of-Motion Method for Momentum System–Bath Coupling. Journal of Physical Chemistry B, 2021, 125, 4863-4873.	1.2	2
87	Calculation of semiclassical free energy differences along nonequilibrium classical trajectories. Journal of Chemical Physics, 2009, 131, 164510.	1.2	0
88	Photosynthetic light harvesting: Insights from multidisciplinary approaches. Chemical Physics, 2020, 533, 110746.	0.9	0
89	Beyond Third-Order Response: Strong-Pulse and N-Wave-Mixing Optical Spectroscopies. , 2011, , .		Ο