Yong-Mei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/866113/publications.pdf

Version: 2024-02-01

53 4,653 36
papers citations h-index

36 57 h-index g-index

60 60 docs citations

60 times ranked 5644 citing authors

#	Article	IF	Citations
1	Tandem catalytic methylation of naphthalene using CO ₂ and H ₂ . Chemical Communications, 2022, 58, 3779-3782.	4.1	0
2	Niobium grafted mesoporous silica for the production of biorenewable $\langle i \rangle p \langle i \rangle$ -xylene from concentrated 2,5-dimethylfuran. Green Chemistry, 2022, 24, 4095-4107.	9.0	11
3	Total hydrogenation of bio-derived furans over supported Ru subnanoclusters prepared <i>via < /i> amino acid-assisted deposition. Green Chemistry, 2020, 22, 850-859.</i>	9.0	15
4	Direct and Efficient Synthesis of Clean H ₂ O ₂ from CO-Assisted Aqueous O ₂ Reduction. ACS Catalysis, 2020, 10, 13993-14005.	11.2	9
5	Exploiting quasi-one-dimensional confinement for proficient hydrogen production from formic acid at room temperature. Journal of Energy Chemistry, 2020, 49, 205-213.	12.9	9
6	Ring-Opening Transformation of 5-Hydroxymethylfurfural Using a Golden Single-Atomic-Site Palladium Catalyst. ACS Catalysis, 2019, 9, 6212-6222.	11.2	60
7	Toward an Integrated Conversion of 5-Hydroxymethylfurfural and Ethylene for the Production of Renewable p-Xylene. CheM, 2018, 4, 2212-2227.	11.7	56
8	Wettability-Driven Palladium Catalysis for Enhanced Dehydrogenative Coupling of Organosilanes. ACS Catalysis, 2017, 7, 1720-1727.	11.2	46
9	An efficient noble-metal-free supported copper catalyst for selective nitrocyclohexane hydrogenation to cyclohexanone oxime. Chemical Communications, 2017, 53, 2930-2933.	4.1	10
10	Highly Chemoselective Reduction of Nitroarenes Using a Titaniaâ€Supported Platinumâ€Nanoparticle Catalyst under a <scp>CO</scp> Atmosphere. Chinese Journal of Chemistry, 2017, 35, 591-595.	4.9	10
11	Direct Synthesis of Pyrroles via Heterogeneous Catalytic Condensation of Anilines with Bioderived Furans. ACS Catalysis, 2017, 7, 959-964.	11.2	33
12	Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO ₂ Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls. Journal of the American Chemical Society, 2017, 139, 517-526.	13.7	76
13	Versatile CO-assisted direct reductive amination of 5-hydroxymethylfurfural catalyzed by a supported gold catalyst. Green Chemistry, 2017, 19, 3880-3887.	9.0	56
14	Heterogeneous Goldâ€Catalyzed Selective Semireduction of Alkynes using Formic Acid as Hydrogen Source. Advanced Synthesis and Catalysis, 2016, 358, 1410-1416.	4.3	28
15	Gold supported on zirconia polymorphs for hydrogen generation from formic acid in base-free aqueous medium. Journal of Power Sources, 2016, 328, 463-471.	7.8	56
16	Promoted hydrogen generation from formic acid with amines using Au/ZrO2 catalyst. International Journal of Hydrogen Energy, 2016, 41, 21193-21202.	7.1	40
17	Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinicâ€Nitrogenâ€Doped Carbon. Angewandte Chemie, 2016, 128, 12028-12032.	2.0	42
18	Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinicâ€Nitrogenâ€Doped Carbon. Angewandte Chemie - International Edition, 2016, 55, 11849-11853.	13.8	284

#	Article	IF	Citations
19	Highly selective supported gold catalyst for CO-driven reduction of furfural in aqueous media. Chinese Journal of Catalysis, 2016, 37, 1669-1675.	14.0	14
20	Direct reductive amination of aldehydes with nitroarenes using bio-renewable formic acid as a hydrogen source. Green Chemistry, 2016, 18, 2507-2513.	9.0	75
21	Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts. Green Chemistry, 2016, 18, 2155-2164.	9.0	127
22	Goldâ€Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile. ChemSusChem, 2015, 8, 3029-3035.	6.8	94
23	Deoxygenative coupling of nitroarenes for the synthesis of aromatic azo compounds with CO using supported gold catalysts. Chemical Communications, 2015, 51, 11217-11220.	4.1	41
24	Heterogeneous Goldâ€Catalyzed Selective Reductive Transformation of Quinolines with Formic Acid. Advanced Synthesis and Catalysis, 2015, 357, 753-760.	4.3	62
25	Propylene from Renewable Resources: Catalytic Conversion of Glycerol into Propylene. ChemSusChem, 2014, 7, 743-747.	6.8	50
26	Supported Gold Catalysis: From Small Molecule Activation to Green Chemical Synthesis. Accounts of Chemical Research, 2014, 47, 793-804.	15.6	167
27	An Aqueous Rechargeable Formateâ€Based Hydrogen Battery Driven by Heterogeneous Pd Catalysis. Angewandte Chemie - International Edition, 2014, 53, 13583-13587.	13.8	148
28	Efficient and exceptionally selective semireduction of alkynes using a supported gold catalyst under a CO atmosphere. Chemical Communications, 2014, 50, 5626.	4.1	32
29	Gold supported on titania for specific monohydrogenation of dinitroaromatics in the liquid phase. Green Chemistry, 2014, 16, 4162.	9.0	23
30	Mild, selective and switchable transfer reduction of nitroarenes catalyzed by supported gold nanoparticles. Catalysis Science and Technology, 2013, 3, 3200.	4.1	85
31	Efficient catalytic hydrogenolysis of glycerol using formic acid as hydrogen source. Chinese Journal of Catalysis, 2013, 34, 2066-2074.	14.0	31
32	Copper-based catalysts for the efficient conversion of carbohydrate biomass into \hat{l}^3 -valerolactone in the absence of externally added hydrogen. Energy and Environmental Science, 2013, 6, 3308.	30.8	167
33	Sucrose-templated mesoporous \hat{l}^2 -Ga2O3 as a novel efficient catalyst for dehydrogenation of propane in the presence of CO2. Catalysis Communications, 2013, 30, 61-65.	3.3	23
34	Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived \hat{l}^3 -valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chemistry, 2012, 14, 935.	9.0	199
35	Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions. Journal of the American Chemical Society, 2012, 134, 8926-8933.	13.7	394
36	Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines. Green Chemistry, 2012, 14, 930.	9.0	223

#	Article	IF	CITATIONS
37	A General and Efficient Heterogeneous Gold atalyzed Hydration of Nitriles in Neat Water under Mild Atmospheric Conditions. ChemSusChem, 2012, 5, 1392-1396.	6.8	59
38	Mild and efficient CO-mediated eliminative deoxygenation of epoxides catalyzed by supported gold nanoparticles. Chemical Communications, 2011, 47, 812-814.	4.1	45
39	Gold supported on mesostructured ceria as an efficient catalyst for the chemoselective hydrogenation of carbonyl compounds in neat water. Green Chemistry, 2011, 13, 602.	9.0	97
40	Direct one-pot reductive imination of nitroarenes using aldehydes and carbon monoxide by titania supported gold nanoparticles at room temperature. Green Chemistry, 2011, 13, 2672.	9.0	53
41	The Catalytic Use of Supported Gold Nanoparticles for Styrene Synthesis Via Oxidative Dehydrogenation of Ethylbenzene. Catalysis Letters, 2011, 141, 198-206.	2.6	8
42	Highly Chemo―and Regioselective Transfer Reduction of Aromatic Nitro Compounds using Ammonium Formate Catalyzed by Supported Gold Nanoparticles. Advanced Synthesis and Catalysis, 2011, 353, 281-286.	4.3	93
43	Hydrogenâ€Independent Reductive Transformation of Carbohydrate Biomass into γâ€Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts. Angewandte Chemie - International Edition, 2011, 50, 7815-7819.	13.8	316
44	Mesostructured CeO2 as an Effective Catalyst for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene. Catalysis Letters, 2009, 133, 307-313.	2.6	34
45	Highly Selective Ce–Ni–O Catalysts for Efficient Low Temperature Oxidative Dehydrogenation of Propane. Catalysis Letters, 2009, 130, 350-354.	2.6	36
46	Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation. Applied Catalysis B: Environmental, 2009, 90, 224-232.	20.2	266
47	Enhanced Activity of Spinel-type Ga2O3–Al2O3 Mixed Oxide for the Dehydrogenation of Propane in the Presence of CO2. Catalysis Letters, 2008, 124, 369-375.	2.6	33
48	Aluminum Containing MCF Silica as Highly Efficient Solid Acid Catalyst for Alcohol Esterification. Catalysis Letters, 2008, 125, 62-68.	2.6	22
49	Ga–Al Mixedâ€Oxideâ€Supported Gold Nanoparticles with Enhanced Activity for Aerobic Alcohol Oxidation. Angewandte Chemie - International Edition, 2008, 47, 334-337.	13.8	212
50	Dehydrogenation of propane over spinel-type gallia–alumina solid solution catalysts. Journal of Catalysis, 2008, 256, 293-300.	6.2	127
51	MnO ₂ Nanorod Supported Gold Nanoparticles with Enhanced Activity for Solvent-free Aerobic Alcohol Oxidation. Journal of Physical Chemistry C, 2008, 112, 6981-6987.	3.1	116
52	Chromium Supported on Mesocellular Silica Foam (MCF) for Oxidative Dehydrogenation of Propane. Catalysis Letters, 2006, 106, 145-152.	2.6	34
53	Title is missing!. Catalysis Letters, 2003, 88, 61-67.	2.6	74