List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8661048/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Numerical Simulation of the Smoluchowski Coagulation Equation. SIAM Journal of Scientific Computing, 2004, 25, 2004-2028.                                                                                 | 2.8 | 145       |
| 2  | Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions.<br>Calculus of Variations and Partial Differential Equations, 2009, 35, 133-168.                            | 1.7 | 138       |
| 3  | The 8Ï€-problem for radially symmetric solutions of a chemotaxis model in the plane. Mathematical Methods in the Applied Sciences, 2006, 29, 1563-1583.                                                   | 2.3 | 97        |
| 4  | Finite time blow-up for a one-dimensional quasilinear parabolic–parabolic chemotaxis system. Annales<br>De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2010, 27, 437-446.                         | 1.4 | 83        |
| 5  | Gelation and mass conservation in coagulation-fragmentation models. Journal of Differential Equations, 2003, 195, 143-174.                                                                                | 2.2 | 74        |
| 6  | The Continuous Coagulation-Fragmentation¶Equations with Diffusion. Archive for Rational<br>Mechanics and Analysis, 2002, 162, 45-99.                                                                      | 2.4 | 73        |
| 7  | Existence of Self-Similar Solutions to Smoluchowski's Coagulation Equation. Communications in<br>Mathematical Physics, 2005, 256, 589-609.                                                                | 2.2 | 71        |
| 8  | On a Class of Continuous Coagulation-Fragmentation Equations. Journal of Differential Equations, 2000, 167, 245-274.                                                                                      | 2.2 | 61        |
| 9  | Chapman–Enskog derivation of the generalized Smoluchowski equation. Physica A: Statistical<br>Mechanics and Its Applications, 2004, 341, 145-164.                                                         | 2.6 | 60        |
| 10 | From the discrete to the continuous coagulation–fragmentation equations. Proceedings of the Royal<br>Society of Edinburgh Section A: Mathematics, 2002, 132, 1219-1248.                                   | 1.2 | 59        |
| 11 | On convergence to equilibria for the Keller–Segel chemotaxis model. Journal of Differential<br>Equations, 2007, 236, 551-569.                                                                             | 2.2 | 57        |
| 12 | Global solutions to viscous hamilton-jacob1 equations with irregular initial data. Communications in<br>Partial Differential Equations, 1999, 24, 1999-2021.                                              | 2.2 | 54        |
| 13 | Well-posedness of Smoluchowski's coagulation equation for a class of homogeneous kernels.<br>Journal of Functional Analysis, 2006, 233, 351-379.                                                          | 1.4 | 44        |
| 14 | On coalescence equations and related models. Modeling and Simulation in Science, Engineering and Technology, 2004, , 321-356.                                                                             | 0.6 | 44        |
| 15 | The Parabolic-Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in<br>â" <sup><i>d</i></sup> , <i>d</i> A≥Â3. Communications in Partial Differential Equations, 2013, 38, 658-686. | 2.2 | 39        |
| 16 | Exponential decay for the growth-fragmentation/cell-division equations. Communications in Mathematical Sciences, 2009, 7, 503-510.                                                                        | 1.0 | 37        |
| 17 | Asymptotic profiles of solutions to viscous Hamilton–Jacobi equations. Journal Des Mathematiques<br>Pures Et Appliquees, 2004, 83, 1275-1308.                                                             | 1.6 | 36        |
| 18 | A gradient flow approach to a thin film approximation of the Muskat problem. Calculus of Variations and Partial Differential Equations, 2013, 47, 319-341.                                                | 1.7 | 36        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A hybrid variational principle for the Keller–Segel system in â"≺sup>2. ESAIM: Mathematical<br>Modelling and Numerical Analysis, 2015, 49, 1553-1576.                                            | 1.9 | 33        |
| 20 | Finite time blowup for the parabolic–parabolic Keller–Segel system with critical diffusion. Annales<br>De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2017, 34, 197-220.                 | 1.4 | 32        |
| 21 | On the OortHulstSafronov Coagulation Equation and Its Relation to the Smoluchowski Equation.<br>SIAM Journal on Mathematical Analysis, 2003, 34, 1399-1421.                                      | 1.9 | 30        |
| 22 | A stationary free boundary problem modeling electrostatic MEMS. Archive for Rational Mechanics and Analysis, 2013, 207, 139-158.                                                                 | 2.4 | 30        |
| 23 | A Parabolic Free Boundary Problem Modeling Electrostatic MEMS. Archive for Rational Mechanics and Analysis, 2014, 211, 389-417.                                                                  | 2.4 | 30        |
| 24 | Delayed blowâ€up for chemotaxis models with local sensing. Journal of the London Mathematical<br>Society, 2021, 103, 1596-1617.                                                                  | 1.0 | 30        |
| 25 | Finite time blow-up for radially symmetric solutions to a critical quasilinear Smoluchowski–Poisson<br>system. Comptes Rendus Mathematique, 2009, 347, 237-242.                                  | 0.3 | 28        |
| 26 | THE DISCRETE COAGULATION EQUATIONS WITH MULTIPLE FRAGMENTATION. Proceedings of the Edinburgh Mathematical Society, 2002, 45, 67-82.                                                              | 0.3 | 27        |
| 27 | Global existence of a strong solution to the one-dimensional full model for irreversible phase transitions. Journal of Mathematical Analysis and Applications, 2002, 271, 426-442.               | 1.0 | 27        |
| 28 | Well-posedness for a model of prion proliferation dynamics. Journal of Evolution Equations, 2007, 7, 241-264.                                                                                    | 1.1 | 27        |
| 29 | Fermi–Dirac–Fokker–Planck equation: Well-posedness & long-time asymptotics. Journal of<br>Differential Equations, 2009, 247, 2209-2234.                                                          | 2.2 | 27        |
| 30 | Some singular equations modeling MEMS. Bulletin of the American Mathematical Society, 2016, 54, 437-479.                                                                                         | 1.5 | 26        |
| 31 | On the growth of mass for a viscous Hamilton-Jacobi equation. Journal D'Analyse Mathematique, 2003,<br>89, 367-383.                                                                              | 0.8 | 25        |
| 32 | THE LIFSHITZ–SLYOZOV EQUATION WITH ENCOUNTERS. Mathematical Models and Methods in Applied Sciences, 2001, 11, 731-748.                                                                           | 3.3 | 24        |
| 33 | Local properties of self-similar solutions to Smoluchowski's coagulation equation with sum kernels.<br>Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2006, 136, 485-508. | 1.2 | 24        |
| 34 | Global existence and uniform boundedness in a chemotaxis model with signal-dependent motility.<br>Journal of Differential Equations, 2021, 299, 513-541.                                         | 2.2 | 24        |
| 35 | Gradient estimates for a degenerate parabolic equation with gradient absorption and applications.<br>Journal of Functional Analysis, 2008, 254, 851-878.                                         | 1.4 | 23        |
| 36 | Weak solutions to the continuous coagulation equation with multiple fragmentation. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 2199-2208.                                      | 1.1 | 22        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation. Archiv Der Mathematik, 2004, 83, 558-567.                                                            | 0.5 | 21        |
| 38 | Extinction and decay estimates for viscous Hamilton-Jacobi equations in \${mathbb {R}}^N\$.<br>Proceedings of the American Mathematical Society, 2001, 130, 1103-1111.                                      | 0.8 | 20        |
| 39 | Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase<br>flows in porous media. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2011, 28, 583-598. | 1.4 | 20        |
| 40 | Positivity, decay, and extinction for a singular diffusion equation with gradient absorption. Journal of Functional Analysis, 2012, 262, 3186-3239.                                                         | 1.4 | 19        |
| 41 | Blowup of solutions to a diffusive aggregation model. Nonlinearity, 2009, 22, 1559-1568.                                                                                                                    | 1.4 | 18        |
| 42 | Convergence to equilibrium for the continuous coagulation-fragmentation equation. Bulletin Des<br>Sciences Mathematiques, 2003, 127, 179-190.                                                               | 1.0 | 17        |
| 43 | Non-isothermal Smoluchowski–Poisson equations as a singular limit of the<br>Navier–Stokes–Fourier–Poisson system. Journal Des Mathematiques Pures Et Appliquees, 2007, 88,<br>325-349.                      | 1.6 | 17        |
| 44 | Localized Non-diffusive Asymptotic Patterns for Nonlinear Parabolic Equations with Gradient Absorption. Journal of Dynamics and Differential Equations, 2007, 19, 985-1005.                                 | 1.9 | 17        |
| 45 | A free boundary problem modeling electrostatic MEMS: I. Linear bending effects. Mathematische<br>Annalen, 2014, 360, 307-349.                                                                               | 1.4 | 17        |
| 46 | A free boundary problem modeling electrostatic MEMS: II. Nonlinear bending effects. Mathematical<br>Models and Methods in Applied Sciences, 2014, 24, 2549-2568.                                            | 3.3 | 16        |
| 47 | Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent. Indiana University<br>Mathematics Journal, 2007, 56, 459-480.                                                            | 0.9 | 16        |
| 48 | From the discrete to the continuous coagulation–fragmentation equations. Proceedings of the Royal<br>Society of Edinburgh Section A: Mathematics, 2002, 132, 1219-1248.                                     | 1.2 | 15        |
| 49 | Self-similar solutions to a coagulation equation with multiplicative kernel. Physica D: Nonlinear<br>Phenomena, 2006, 222, 80-87.                                                                           | 2.8 | 15        |
| 50 | Marcus–Lushnikov processes, Smoluchowski's and Flory's models. Stochastic Processes and Their<br>Applications, 2009, 119, 167-189.                                                                          | 0.9 | 15        |
| 51 | Self-similar solutions with fat tails for a coagulation equation with nonlocal drift. Comptes Rendus<br>Mathematique, 2009, 347, 909-914.                                                                   | 0.3 | 15        |
| 52 | Dynamics of a free boundary problem with curvature modeling electrostatic MEMS. Transactions of the American Mathematical Society, 2014, 367, 5693-5719.                                                    | 0.9 | 15        |
| 53 | Thin film equations with soluble surfactant and gravity: Modeling and stability of steady states.<br>Mathematische Nachrichten, 2012, 285, 210-222.                                                         | 0.8 | 14        |
| 54 | Weak Compactness Techniques and Coagulation Equations. Lecture Notes in Mathematics, 2015, ,<br>199-253.                                                                                                    | 0.2 | 14        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Global existence, uniform boundedness, and stabilization in a chemotaxis system with<br>density-suppressed motility and nutrient consumption. Communications in Partial Differential<br>Equations, 2022, 47, 1024-1069. | 2.2 | 14        |
| 56 | Liapunov Functionals for Smoluchowski's Coagulation Equation and Convergence to Self-Similarity.<br>Monatshefte Fur Mathematik, 2005, 146, 127-142.                                                                     | 0.9 | 13        |
| 57 | Self-Similar Solutions To The Oort–Hulst–Safronov Coagulation Equation. SIAM Journal on<br>Mathematical Analysis, 2007, 39, 345-378.                                                                                    | 1.9 | 13        |
| 58 | Finite time singularity in a free boundary problem modeling MEMS. Comptes Rendus Mathematique, 2013, 351, 807-812.                                                                                                      | 0.3 | 13        |
| 59 | Blow-up behavior of solutions to a degenerate parabolic–parabolic Keller–Segel system.<br>Mathematische Annalen, 2017, 367, 461-499.                                                                                    | 1.4 | 13        |
| 60 | Very singular solutions to a nonlinear parabolic equation with absorption. I. Existence. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2001, 131, 27-44.                                        | 1.2 | 12        |
| 61 | Convergence to self-similar solutions for a coagulation equation. Zeitschrift Fur Angewandte<br>Mathematik Und Physik, 2005, 56, 398-411.                                                                               | 1.4 | 12        |
| 62 | Existence and uniqueness of very singular solutions for a fast diffusion equation with gradient absorption. Journal of the London Mathematical Society, 2013, 87, 509-529.                                              | 1.0 | 12        |
| 63 | Self-Similarity in a Thin Film Muskat Problem. SIAM Journal on Mathematical Analysis, 2017, 49, 2790-2842.                                                                                                              | 1.9 | 12        |
| 64 | Very singular solutions to a nonlinear parabolic equation with absorption II. Uniqueness.<br>Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2004, 134, 39-54.                                    | 1.2 | 11        |
| 65 | A Phase-Field Approximation of the Willmore Flow with Volume and Area Constraints. SIAM Journal on Mathematical Analysis, 2012, 44, 3734-3754.                                                                          | 1.9 | 11        |
| 66 | Convergence to Separate Variables Solutions for a Degenerate Parabolic Equation with Gradient Source. Journal of Dynamics and Differential Equations, 2012, 24, 29-49.                                                  | 1.9 | 11        |
| 67 | A thin film approximation of the Muskat problem with gravity and capillary forces. Journal of the<br>Mathematical Society of Japan, 2014, 66, .                                                                         | 0.4 | 11        |
| 68 | Well-Posedness and Convergence to the Steady State for a Model of Morphogen Transport. SIAM<br>Journal on Mathematical Analysis, 2009, 40, 1725-1749.                                                                   | 1.9 | 10        |
| 69 | A fourth-order model for MEMS with clamped boundary conditions. Proceedings of the London<br>Mathematical Society, 2014, 109, 1435-1464.                                                                                | 1.3 | 10        |
| 70 | Convergence to steady states for a one-dimensional viscous Hamilton–Jacobi equation with Dirichlet<br>boundary conditions. Pacific Journal of Mathematics, 2007, 230, 347-364.                                          | 0.5 | 10        |
| 71 | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system.<br>Discrete and Continuous Dynamical Systems, 2010, 26, 417-430.                                                      | 0.9 | 10        |
| 72 | Non-Diffusive Large Time Behavior for a Degenerate Viscous Hamilton–Jacobi Equation.<br>Communications in Partial Differential Equations, 2009, 34, 281-304.                                                            | 2.2 | 9         |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Global weak solutions for a degenerate parabolic system modeling the spreading of insoluble surfactant. Indiana University Mathematics Journal, 2011, 60, 1975-2020.                    | 0.9 | 9         |
| 74 | Eternal solutions to a singular diffusion equation with critical gradient absorption. Nonlinearity, 2013, 26, 3169-3195.                                                                | 1.4 | 9         |
| 75 | Sign-preserving property for some fourth-order elliptic operators in one dimension or in radial symmetry. Journal D'Analyse Mathematique, 2015, 127, 69-89.                             | 0.8 | 9         |
| 76 | Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel.<br>Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2020, 150, 1805-1825. | 1.2 | 9         |
| 77 | Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive<br>Hamilton–Jacobi equation. Asymptotic Analysis, 2010, 67, 229-250.                | 0.5 | 8         |
| 78 | Asymptotic behaviour of a nonlinear parabolic equation with gradient absorption and critical exponent. Interfaces and Free Boundaries, 2011, 13, 271-295.                               | 0.8 | 8         |
| 79 | A phase-field approximation of the Willmore flow with volume constraint. Interfaces and Free Boundaries, 2011, 13, 341-351.                                                             | 0.8 | 8         |
| 80 | Concentration phenomena in a diffusive aggregation model. Journal of Differential Equations, 2021, 271, 1092-1108.                                                                      | 2.2 | 8         |
| 81 | Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion.<br>Communications on Pure and Applied Analysis, 2012, 11, 47-60.                        | 0.8 | 8         |
| 82 | Proteus mirabilis swarm-colony development with drift. Journal Des Mathematiques Pures Et<br>Appliquees, 2009, 92, 476-498.                                                             | 1.6 | 7         |
| 83 | Global existence for a hydrogen storage model with full energy balance. Nonlinear Analysis: Theory,<br>Methods & Applications, 2012, 75, 3558-3573.                                     | 1.1 | 7         |
| 84 | The Fokker–Planck equation for bosons in 2D: Well-posedness and asymptotic behavior. Nonlinear<br>Analysis: Theory, Methods & Applications, 2016, 137, 291-305.                         | 1.1 | 7         |
| 85 | Large time behavior of a two phase extension of the porous medium equation. Interfaces and Free Boundaries, 2019, 21, 199-229.                                                          | 0.8 | 7         |
| 86 | Shape Derivative of the Dirichlet Energy for a Transmission Problem. Archive for Rational Mechanics and Analysis, 2020, 237, 447-496.                                                   | 2.4 | 7         |
| 87 | Oscillatory dynamics in Smoluchowski's coagulation equation with diagonal kernel. Kinetic and<br>Related Models, 2018, 11, 933-952.                                                     | 0.9 | 7         |
| 88 | MATHEMATICAL MODELS OF RECEPTOR-MEDIATED TRANSPORT OF MORPHOGENS. Mathematical Models and Methods in Applied Sciences, 2010, 20, 2021-2052.                                             | 3.3 | 6         |
| 89 | Refined Asymptotics for the Infinite Heat Equation with Homogeneous Dirichlet Boundary Conditions.<br>Communications in Partial Differential Equations, 2010, 36, 532-546.              | 2.2 | 6         |
| 90 | Weak solutions to a thin film model with capillary effects and insoluble surfactant. Nonlinearity, 2012, 25, 2423-2441.                                                                 | 1.4 | 6         |

PHILIPPE LAURENçOT

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Absence of Gelation and Self-Similar Behavior for a Coagulation-Fragmentation Equation. SIAM<br>Journal on Mathematical Analysis, 2015, 47, 2355-2374.                             | 1.9 | 6         |
| 92  | A variational approach to a stationary free boundary problem modeling MEMS. ESAIM - Control,<br>Optimisation and Calculus of Variations, 2016, 22, 417-438.                        | 1.3 | 6         |
| 93  | Finite speed of propagation and waiting time for a thin-film Muskat problem. Proceedings of the Royal<br>Society of Edinburgh Section A: Mathematics, 2017, 147, 813-830.          | 1.2 | 6         |
| 94  | Heterogeneous Dielectric Properties in Models for Microelectromechanical Systems. SIAM Journal on<br>Applied Mathematics, 2018, 78, 504-530.                                       | 1.8 | 6         |
| 95  | Uniqueness of Mass-Conserving Self-similar Solutions to Smoluchowski's Coagulation Equation with<br>Inverse Power Law Kernels. Journal of Statistical Physics, 2018, 171, 484-492. | 1.2 | 6         |
| 96  | An Age and Spatially Structured Population Model for <i>Proteus Mirabilis</i> Swarm-Colony<br>Development. Mathematical Modelling of Natural Phenomena, 2008, 3, 49-77.            | 2.4 | 6         |
| 97  | Nonuniversal self-similarity in a coagulation–annihilation model with constant kernels. Journal of<br>Physics A: Mathematical and Theoretical, 2010, 43, 455210.                   | 2.1 | 5         |
| 98  | Self-Similar Solutions to a Kinetic Model for Grain Growth. Journal of Nonlinear Science, 2012, 22, 399-427.                                                                       | 2.1 | 5         |
| 99  | A constrained model for MEMS with varying dielectric properties. Journal of Elliptic and Parabolic Equations, 2017, 3, 15-51.                                                      | 0.9 | 5         |
| 100 | Reinforced Limit of a MEMS Model with Heterogeneous Dielectric Properties. Applied Mathematics and Optimization, 2021, 84, 1373-1393.                                              | 1.6 | 5         |
| 101 | Existence and NonExistence for the Collision-Induced Breakage Equation. SIAM Journal on Mathematical Analysis, 2021, 53, 4605-4636.                                                | 1.9 | 5         |
| 102 | Global Existence vs. Blowup in a One-dimensional Smoluchowski-Poisson System. Progress in Nonlinear Differential Equations and Their Application, 2011, , 95-109.                  | 0.9 | 5         |
| 103 | Steady states for a fragmentation equation with size diffusion. , 0, , .                                                                                                           |     | 5         |
| 104 | On a three-dimensional free boundary problem modeling electrostatic MEMS. Interfaces and Free<br>Boundaries, 2016, 18, 393-411.                                                    | 0.8 | 5         |
| 105 | Optimal growth rates for a viscous Hamilton-Jacobi equation. Journal of Evolution Equations, 2005, 5, 123-135.                                                                     | 1.1 | 4         |
| 106 | Weak solutions to the collision-induced breakage equation with dominating coagulation. Journal of Differential Equations, 2021, 280, 690-729.                                      | 2.2 | 4         |
| 107 | Global bounded and unbounded solutions to a chemotaxis system with indirect signal production.<br>Discrete and Continuous Dynamical Systems - Series B, 2019, 24, 6419-6444.       | 0.9 | 4         |
| 108 | Asymptotic behavior for a singular diffusion equation with gradient absorption. Journal of Differential Equations, 2014, 256, 2739-2777.                                           | 2.2 | 3         |

PHILIPPE LAURENçOT

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Traveling Waves for a Thin Film with Gravity and Insoluble Surfactant. SIAM Journal on Applied Dynamical Systems, 2015, 14, 1991-2012.                                                  | 1.6 | 3         |
| 110 | Large time behavior for the fast diffusion equation with critical absorption. Journal of Differential Equations, 2016, 260, 8000-8024.                                                  | 2.2 | 3         |
| 111 | Instantaneous shrinking and single point extinction for viscous Hamilton–Jacobi equations with fast<br>diffusion. Mathematische Annalen, 2017, 368, 65-109.                             | 1.4 | 3         |
| 112 | Self-similar extinction for a diffusive Hamilton–Jacobi equation with critical absorption. Calculus of<br>Variations and Partial Differential Equations, 2017, 56, 1.                   | 1.7 | 3         |
| 113 | Mass-conserving solutions to coagulation-fragmentation equations with nonintegrable fragment distribution function. Quarterly of Applied Mathematics, 2018, 76, 767-785.                | 0.7 | 2         |
| 114 | Stationary solutions to coagulation-fragmentation equations. Annales De L'Institut Henri Poincare<br>(C) Analyse Non Lineaire, 2019, 36, 1903-1939.                                     | 1.4 | 2         |
| 115 | The fragmentation equation with size diffusion: Small and large size behavior of stationary solutions. Kinetic and Related Models, 2021, .                                              | 0.9 | 2         |
| 116 | Energy minimizers for an asymptotic MEMS model with heterogeneous dielectric properties. Calculus of Variations and Partial Differential Equations, 2022, 61, 1.                        | 1.7 | 2         |
| 117 | The fragmentation equation with size diffusion: Well posedness and long-term behaviour. European<br>Journal of Applied Mathematics, 0, , 1-34.                                          | 2.9 | 2         |
| 118 | Non-existence of nonnegative separate variable solutions to a porous medium equation with spatially dependent nonlinear source. Bulletin Des Sciences Mathematiques, 2022, 179, 103167. | 1.0 | 2         |
| 119 | Global-in-time solutions for the isothermal Matovich–Pearson equations. Nonlinearity, 2011, 24, 277-292.                                                                                | 1.4 | 1         |
| 120 | Stationary solutions to a nonlocal fourth-order elliptic obstacle problem. Journal of Elliptic and<br>Parabolic Equations, 2020, 6, 171-186.                                            | 0.9 | 1         |
| 121 | Mass Threshold for Infinite-time Blowup in a Chemotaxis Model with Split Population. SIAM Journal on Mathematical Analysis, 2021, 53, 3385-3419.                                        | 1.9 | 1         |
| 122 | Convergence of Energy Minimizers of a MEMS Model in the Reinforced Limit. Acta Applicandae<br>Mathematicae, 2021, 173, 1.                                                               | 1.0 | 1         |
| 123 | Touchdown is the Only Finite Time Singularity in a Three-Dimensional MEMS Model. Annales<br>Mathematiques Blaise Pascal, 2020, 27, 65-81.                                               | 0.1 | 1         |
| 124 | The porous medium equation as a singular limit of the thin film Muskat problem. Asymptotic Analysis, 2022, , 1-17.                                                                      | 0.5 | 1         |
| 125 | A stochastic min-driven coalescence process and its hydrodynamical limit. Annales De L'institut Henri<br>Poincare (B) Probability and Statistics, 2011, 47, .                           | 1.1 | 0         |
| 126 | Some recent results on a free boundary problem for microelectromechanical systems. Proceedings in Applied Mathematics and Mechanics, 2014, 14, 761-762.                                 | 0.2 | 0         |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Large time behavior and Lyapunov functionals for a nonlocal differential equation. Nonlinear<br>Differential Equations and Applications, 2016, 23, 1.                                                                    | 0.8 | 0         |
| 128 | Large Time Behavior for a Quasilinear Diffusion Equation with Critical Gradient Absorption. Journal of Dynamics and Differential Equations, 2017, 29, 817-832.                                                           | 1.9 | 0         |
| 129 | Vanishing aspect ratio limit for a fourth-order MEMS model. Annali Di Matematica Pura Ed Applicata, 2017, 196, 1537-1556.                                                                                                | 1.0 | 0         |
| 130 | Extinction for a Singular Diffusion Equation with Strong Gradient Absorption Revisited. Advanced Nonlinear Studies, 2018, 18, 785-797.                                                                                   | 1.7 | 0         |
| 131 | Classification of extinction profiles for a one-dimensional diffusive Hamilton–Jacobi equation with<br>critical absorption. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2018, 148,<br>559-574. | 1.2 | 0         |
| 132 | Optimal extinction rates for the fast diffusion equation with strong absorption. Bulletin of the London Mathematical Society, 2018, 50, 635-648.                                                                         | 0.8 | 0         |
| 133 | Finite Time Singularity in a MEMS Model Revisited. Zeitschrift Fur Analysis Und Ihre Anwendung, 2018, 37, 209-219.                                                                                                       | 0.6 | 0         |
| 134 | Mass-conserving self-similar solutions to coagulation–fragmentation equations. Communications in<br>Partial Differential Equations, 2019, 44, 773-800.                                                                   | 2.2 | 0         |
| 135 | Sharp Sobolev Estimates for Concentration of Solutions to an Aggregation–Diffusion Equation.<br>Journal of Dynamics and Differential Equations, 0, , 1.                                                                  | 1.9 | 0         |