
Daniela Storch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8660522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broodstock exposure to warming and elevated <scp><i>p</i>CO₂</scp> impairs gamete quality and narrows the temperature window of fertilisation in Atlantic cod. Journal of Fish Biology, 2022, 101, 822-833.	1.6	0
2	Fish embryo vulnerability to combined acidification and warming coincides with low capacity for homeostatic regulation. Journal of Experimental Biology, 2020, 223, .	1.7	26
3	Latitudinal variation in maternal investment traits of the kelp crab Taliepus dentatus along the coast of Chile. Marine Biology, 2018, 165, 1.	1.5	14
4	Forecasting future recruitment success for Atlantic cod in the warming and acidifying Barents Sea. Global Change Biology, 2018, 24, 526-535.	9.5	26
5	Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Science Advances, 2018, 4, eaas8821.	10.3	50
6	Impact of Ocean Acidification and Warming on the bioenergetics of developing eggs of Atlantic herring Clupea harengus. , 2018, 6, coy050.		27
7	Elevated pCO2 Affects Feeding Behavior and Acute Physiological Response of the Brown Crab Cancer pagurus. Frontiers in Physiology, 2018, 9, 1164.	2.8	29
8	Antioxidant response of the hard shelled mussel Mytilus coruscus exposed to reduced pH and oxygen concentration. Ecotoxicology and Environmental Safety, 2017, 137, 94-102.	6.0	59
9	Effects of ocean acidification increase embryonic sensitivity to thermal extremes in Atlantic cod, <i>Gadus morhua</i> . Clobal Change Biology, 2017, 23, 1499-1510.	9.5	50
10	Combined effects of short-term exposure to elevated CO 2 and decreased O 2 on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Chemosphere, 2016, 155, 207-216.	8.2	59
11	Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil. Environmental Pollution, 2016, 218, 605-614.	7.5	42
12	Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations. PLoS ONE, 2016, 11, e0159068.	2.5	64
13	Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming. BMC Genomics, 2014, 15, 789.	2.8	70
14	Temperature tolerance of different larval stages of the spider crab Hyas araneus exposed to elevated seawater PCO2. Frontiers in Zoology, 2014, 11, 87.	2.0	28
15	Effects of ocean acidification and warming on the mitochondrial physiology of Atlantic cod. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e26.	1.0	2
16	Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions. Global Change Biology, 2014, 20, 3059-3067.	9.5	63
17	Tolerance of Hyas araneus zoea I larvae to elevated seawater PCO2 despite elevated metabolic costs. Marine Biology, 2013, 160, 1943-1953.	1.5	23
18	Characterization and analysis of a transcriptome from the boreal spider crab Hyas araneus. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2013, 8, 344-351.	1.0	14

DANIELA STORCH

#	Article	IF	CITATIONS
19	Temperature-dependent activity in early life stages of the stone crab Paralomis granulosa (Decapoda,) Tj ETQq1 Biology and Ecology, 2011, 397, 27-37.	1 0.78431 1.5	4 rgBT /Over 9
20	Thermal tolerance of larval stages of the Chilean kelp crab Taliepus dentatusÂ. Marine Ecology - Progress Series, 2011, 429, 157-167.	1.9	51
21	Thermal tolerance of crustacean larvae (zoea I) in two different populations of the kelp crab <i>Taliepus dentatus</i> (Milne-Edwards). Journal of Experimental Biology, 2009, 212, 1371-1376.	1.7	56
22	Aerobic mitochondrial capacities in Antarctic and temperate eelpout (Zoarcidae) subjected to warm versus cold acclimation. Polar Biology, 2005, 28, 575-584.	1.2	53
23	Metabolic Biochemistry: Its Role in Thermal Tolerance and in the Capacities of Physiological and Ecological Function. Fish Physiology, 2005, 22, 79-154.	0.8	71
24	Temperature-dependent protein synthesis capacities in Antarctic and temperate (North Sea) fish (Zoarcidae). Journal of Experimental Biology, 2005, 208, 2409-2420.	1.7	39
25	Constraints and trade-offs in climate-dependent adaptation: energy budgets and growth in a latitudinal cline. Scientia Marina, 2005, 69, 271-285.	0.6	80
26	Population dynamics and metabolism of Aequipecten opercularis (L.) from the western English Channel (Roscoff, France). Journal of Sea Research, 2004, 52, 33-44.	1.6	22
27	In vitro protein synthesis capacities in a cold stenothermal and a temperate eurythermal pectinid. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2003, 173, 611-620.	1.5	25
28	The Protein Synthesis Machinery Operates at the Same Expense in Eurythermal and Cold Stenothermal Pectinids. Physiological and Biochemical Zoology, 2003, 76, 28-40.	1.5	27