Asmat Salim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/86605/publications.pdf

Version: 2024-02-01

933447 940533 27 315 10 16 h-index citations g-index papers 27 27 27 353 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Transcription regulators differentiate mesenchymal stem cells into chondroprogenitors, and their $\langle i \rangle$ in vivo $\langle i \rangle$ implantation regenerated the intervertebral disc degeneration. World Journal of Stem Cells, 2022, 14, 163-182.	2.8	14
2	Sodium Butyrate Induces Hepatic Differentiation of Mesenchymal Stem Cells in 3D Collagen Scaffolds. Applied Biochemistry and Biotechnology, 2022, 194, 3721-3732.	2.9	6
3	Decellularized Human Umbilical Tissue-Derived Hydrogels Promote Proliferation and Chondrogenic Differentiation of Mesenchymal Stem Cells. Bioengineering, 2022, 9, 239.	3.5	12
4	Effect of valproic acid on the hepatic differentiation of mesenchymal stem cells in 2D and 3D microenvironments. Molecular and Cellular Biochemistry, 2021, 476, 909-919.	3.1	9
5	Human umbilical cord-derived mesenchymal stem cells and their chondroprogenitor derivatives reduced pain and inflammation signaling and promote regeneration in a rat intervertebral disc degeneration model. Molecular and Cellular Biochemistry, 2021, 476, 3191-3205.	3.1	26
6	Effect of glycyrrhizic acid and $18\hat{i}^2$ -glycyrrhetinic acid on the differentiation of human umbilical cord-mesenchymal stem cells into hepatocytes. World Journal of Stem Cells, 2021, 13, 1580-1594.	2.8	6
7	Effect of \hat{l} ±-pinene and thymoquinone on the differentiation of bone marrow mesenchymal stem cells into neuroprogenitor cells. BioImpacts, 2021, 12, 147-154.	1.5	3
8	Regulating the fate of stem cells for regenerating the intervertebral disc degeneration. World Journal of Stem Cells, 2021, 13, 1881-1904.	2.8	5
9	Effect of a dianthin G analogue in the differentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes. Molecular and Cellular Biochemistry, 2020, 475, 27-39.	3.1	3
10	Small molecule 2′-deoxycytidine differentiates human umbilical cord-derived MSCs into cardiac progenitors in vitro and their in vivo xeno-transplantation improves cardiac function. Molecular and Cellular Biochemistry, 2020, 470, 99-113.	3.1	19
11	Umbilical cord-derived mesenchymal stem cells preconditioned with isorhamnetin: potential therapy for burn wounds. World Journal of Stem Cells, 2020, 12, 1652-1666.	2.8	17
12	ILâ \in 7 overexpression enhances therapeutic potential of rat bone marrow mesenchymal stem cells for diabetic wounds. Wound Repair and Regeneration, 2019, 27, 235-248.	3.0	10
13	Abstract 412: Wnt / \hat{l}^2 -catenin Inhibitor Differentiates Human Mesenchymal Stem Cells into Myogenic Lineage <i>in vitro</i> and Improved Cardiac Function <i>in vivo</i> in Rat Model of Myocardial Infarction. Circulation Research, 2019, 125, .	4.5	1
14	Role of interleukinâ€7 in fusion of rat bone marrow mesenchymal stem cells with cardiomyocytes in vitro and improvement of cardiac function in vivo. Cardiovascular Therapeutics, 2018, 36, e12479.	2.5	12
15	Effect of 2,4-Dinitrophenol preconditioning on the expression levels of mesenchymal markers in neonatal cardiac progenitors. Hellenic Journal of Cardiology, 2017, 58, 98-102.	1.0	O
16	Epacâ€Rap1â€activated mesenchymal stem cells improve cardiac function in rat model of myocardial infarction. Cardiovascular Therapeutics, 2017, 35, e12248.	2.5	28
17	Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Drug Design, Development and Therapy, 2016, 10, 81.	4.3	16
18	Hypoxic Preconditioning Improves the Therapeutic Potential of Aging Bone Marrow Mesenchymal Stem Cells in Streptozotocin-Induced Type-1 Diabetic Mice. Cellular Reprogramming, 2016, 18, 344-355.	0.9	10

#	Article	IF	CITATION
19	Conditioned media trans-differentiate mature fibroblasts into pancreatic beta-like cells. Life Sciences, 2016, 164, 52-59.	4.3	1
20	Preconditioning of mesenchymal stem cells with 2,4-dinitrophenol improves cardiac function in infarcted rats. Life Sciences, 2016, 162, 60-69.	4.3	34
21	Transcription profile of genes affected in response to pathological changes in drug-induced rat model of acute kidney injury. Renal Failure, 2015, 37, 1225-1231.	2.1	3
22	Hypoxic stress and IL-7 gene overexpression enhance the fusion potential of rat bone marrow mesenchymal stem cells with bovine renal epithelial cells. Molecular and Cellular Biochemistry, 2015, 403, 125-137.	3.1	7
23	Dinitrophenol modulates gene expression levels of angiogenic, cell survival and cardiomyogenic factors in bone marrow derived mesenchymal stem cells. Gene, 2015, 555, 448-457.	2.2	15
24	Conditioned medium enhances the fusion capability of rat bone marrow mesenchymal stem cells and cardiomyocytes. Molecular Biology Reports, 2014, 41, 3099-3112.	2.3	17
25	Sequence analysis and structure prediction of enoyl-CoA hydratase from Avicennia marina: Implication of various amino acid residues on substrate–enzyme interactions. Phytochemistry, 2013, 94, 36-44.	2.9	2
26	<scp>DNA</scp> Methylation Inhibitors, $5\hat{a}$ €azacytidine and Zebularine Potentiate the Transdifferentiation of Rat Bone Marrow Mesenchymal Stem Cells into Cardiomyocytes. Cardiovascular Therapeutics, 2013, 31, 201-209.	2.5	39
27	Predicting the functionally distinct residues in the heme, cation, and substrate-binding sites of peroxidase from stress-tolerant mangrove specie, Avicennia marina. Cell Stress and Chaperones, 2011, 16. 585-605.	2.9	0