Jeonghyun Kim

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8660227/jeonghyun-kim-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

51	6,598 citations	31	55
papers		h-index	g-index
55 ext. papers	7,874 ext. citations	15.1 avg, IF	5.05 L-index

#	Paper	IF	Citations
51	Nitrogen-Doped Reduced Graphene Oxide Supported PdRu Nanoparticles Electrocatalyst for Oxygen Reduction Reaction. <i>Nanomaterials</i> , 2021 , 11,	5.4	2
50	Stretchable and Transparent Paper Based on PDMSIINC Composite for Direct Printing. <i>Advanced Materials Technologies</i> , 2021 , 6, 2100156	6.8	2
49	Assembly-Type Wireless Communication Patch for Miniaturized Flexible Wearable Sensors. <i>Advanced Materials Technologies</i> , 2021 , 6, 2100034	6.8	2
48	Near-Field Communication in Biomedical Applications. Sensors, 2021, 21,	3.8	4
47	Networks and near-field communication: up-close but far away 2021 , 197-210		
46	Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. <i>Nature Communications</i> , 2021 , 12, 5008	17.4	21
45	Wireless, Accumulation Mode Dosimeters for Monitoring Pulsed and Non-Pulsed Germicidal Lamps. <i>IEEE Sensors Journal</i> , 2021 , 21, 18706-18714	4	
44	Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. <i>Science Advances</i> , 2020 , 6, eabb1093	14.3	35
43	Multimodal Sensing with a Three-Dimensional Piezoresistive Structure. ACS Nano, 2019 , 13, 10972-109	79 6.7	75
42	Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. <i>Science</i> , 2019 , 363,	33.3	316
41	Wireless, Skin-Mountable EMG Sensor for Human-Machine Interface Application. <i>Micromachines</i> , 2019 , 10,	3.3	12
40	Miniaturized, light-adaptive, wireless dosimeters autonomously monitor exposure to electromagnetic radiation. <i>Science Advances</i> , 2019 , 5, eaay2462	14.3	12
39	Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. <i>Science Advances</i> , 2019 , 5, eaav3294	14.3	299
38	Battery-free, wireless sensors for full-body pressure and temperature mapping. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	176
37	Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. <i>ACS Nano</i> , 2018 , 12, 4164-4171	16.7	23
36	Super-Absorbent Polymer Valves and Colorimetric Chemistries for Time-Sequenced Discrete Sampling and Chloride Analysis of Sweat via Skin-Mounted Soft Microfluidics. <i>Small</i> , 2018 , 14, e170333	4 ¹¹	81
35	Recent Advances in AIV Biosensors Composed of Nanobio Hybrid Material. <i>Micromachines</i> , 2018 , 9,	3.3	26

(2016-2018)

34	Electronic Stuctures: Mechanically Guided Post-Assembly of 3D Electronic Systems (Adv. Funct. Mater. 48/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870344	15.6	1
33	Wireless, battery-free, flexible, miniaturized dosimeters monitor exposure to solar radiation and to light for phototherapy. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	59
32	Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. <i>Nature Medicine</i> , 2018 , 24, 1830-1836	50.5	190
31	Mechanically Guided Post-Assembly of 3D Electronic Systems. <i>Advanced Functional Materials</i> , 2018 , 28, 1803149	15.6	26
30	Solution processes for ultrabroadband and omnidirectional graded-index glass lenses with near-zero reflectivity in high concentration photovoltaics. <i>Scientific Reports</i> , 2018 , 8, 14907	4.9	3
29	WO/W:BiVO/BiVO graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 4648-4655	3.6	28
28	Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics. <i>Neuron</i> , 2017 , 93, 509-521.e3	13.9	225
27	Self-assembled three dimensional network designs for soft electronics. <i>Nature Communications</i> , 2017 , 8, 15894	17.4	238
26	Soft Elastomers with Ionic Liquid-Filled Cavities as Strain Isolating Substrates for Wearable Electronics. <i>Small</i> , 2017 , 13, 1602954	11	67
25	Oximetry: Miniaturized Battery-Free Wireless Systems for Wearable Pulse Oximetry (Adv. Funct. Mater. 1/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	3
24	A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities. <i>NPG Asia Materials</i> , 2017 , 9, e443-e443	10.3	145
23	Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics. <i>Advanced Materials</i> , 2017 , 29, 1702665	24	48
22	Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. <i>Pain</i> , 2017 , 158, 2108-2116	8	76
21	Materials and Device Designs for an Epidermal UV Colorimetric Dosimeter with Near Field Communication Capabilities. <i>Advanced Functional Materials</i> , 2017 , 27, 1604465	15.6	108
20	Miniaturized Battery-Free Wireless Systems for Wearable Pulse Oximetry. <i>Advanced Functional Materials</i> , 2017 , 27, 1604373	15.6	182
19	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. <i>Science Translational Medicine</i> , 2016 , 8, 366ra165	17.5	665
18	Electrodes: Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Long-Term Electrophysiological Recording (Adv. Funct. Mater. 40/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 7280-7280	15.6	
17	Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. <i>Science Advances</i> , 2016 , 2, e1600418	14.3	266

16	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. <i>Science Advances</i> , 2016 , 2, e1601014	14.3	152
15	Bioresorbable silicon electronic sensors for the brain. <i>Nature</i> , 2016 , 530, 71-6	50.4	582
14	Flexible Electronics: An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation (Adv. Mater. 22/2016). <i>Advanced Materials</i> , 2016 , 28, 4563	24	6
13	An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation. <i>Advanced Materials</i> , 2016 , 28, 4462-71	24	173
12	Soft, thin skin-mounted power management systems and their use in wireless thermography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 6131-6	11.5	108
11	Ferromagnetic, folded electrode composite as a soft interface to the skin for long-term electrophysiological recording. <i>Advanced Functional Materials</i> , 2016 , 26, 7281-7290	15.6	40
10	Stretchable Electronics: Epidermal Electronics with Advanced Capabilities in Near-Field Communication (Small 8/2015). <i>Small</i> , 2015 , 11, 905-905	11	8
9	Soft network composite materials with deterministic and bio-inspired designs. <i>Nature Communications</i> , 2015 , 6, 6566	17.4	289
8	Encapsulation of S/SWNT with PANI web for enhanced rate and cycle performance in lithium sulfur batteries. <i>Scientific Reports</i> , 2015 , 5, 8946	4.9	37
7	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. <i>Advanced Functional Materials</i> , 2015 , 25, 1338-1343	15.6	34
6	Epidermal electronics with advanced capabilities in near-field communication. <i>Small</i> , 2015 , 11, 906-12	11	191
5	Epidermal Electronics: Miniaturized Flexible Electronic Systems with Wireless Power and Near-Field Communication Capabilities (Adv. Funct. Mater. 30/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 4919	9 ⁻¹ 459919	2
4	Miniaturized Flexible Electronic Systems with Wireless Power and Near-Field Communication Capabilities. <i>Advanced Functional Materials</i> , 2015 , 25, 4761-4767	15.6	114
3	Materials science. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. <i>Science</i> , 2015 , 347, 154-9	33.3	587
2	Soft microfluidic assemblies of sensors, circuits, and radios for the skin. <i>Science</i> , 2014 , 344, 70-4	33.3	802
1	Patterned oxide semiconductor by electrohydrodynamic jet printing for transparent thin film transistors. <i>Applied Physics Letters</i> , 2012 , 100, 102108	3.4	54