
Jeonghyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8660227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin. Science, 2014, 344, 70-74.	6.0	982
2	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 2016, 8, 366ra165.	5.8	933
3	Bioresorbable silicon electronic sensors for the brain. Nature, 2016, 530, 71-76.	13.7	778
4	Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347, 154-159.	6.0	745
5	Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science, 2019, 363, .	6.0	521
6	Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Science Advances, 2019, 5, eaav3294.	4.7	497
7	Soft network composite materials with deterministic and bio-inspired designs. Nature Communications, 2015, 6, 6566.	5.8	392
8	Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Science Advances, 2016, 2, e1600418.	4.7	336
9	Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nature Medicine, 2018, 24, 1830-1836.	15.2	331
10	Self-assembled three dimensional network designs for soft electronics. Nature Communications, 2017, 8, 15894.	5.8	325
11	Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics. Neuron, 2017, 93, 509-521.e3.	3.8	323
12	Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry. Advanced Functional Materials, 2017, 27, 1604373.	7.8	248
13	Battery-free, wireless sensors for full-body pressure and temperature mapping. Science Translational Medicine, 2018, 10, .	5.8	247
14	An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation. Advanced Materials, 2016, 28, 4462-4471.	11.1	240
15	Epidermal Electronics with Advanced Capabilities in Near-Field Communication. Small, 2015, 11, 906-912.	5.2	224
16	A skin-attachable, stretchable integrated system based on liquid GalnSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Materials, 2017, 9, e443-e443.	3.8	223
17	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Science Advances, 2016, 2, e1601014.	4.7	200
18	Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities. Advanced Functional Materials, 2015, 25, 4761-4767.	7.8	148

JEONGHYUN KIM

#	Article	IF	CITATIONS
19	Soft, thin skin-mounted power management systems and their use in wireless thermography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6131-6136.	3.3	139
20	Materials and Device Designs for an Epidermal UV Colorimetric Dosimeter with Near Field Communication Capabilities. Advanced Functional Materials, 2017, 27, 1604465.	7.8	135
21	Multimodal Sensing with a Three-Dimensional Piezoresistive Structure. ACS Nano, 2019, 13, 10972-10979.	7.3	134
22	Superâ€Absorbent Polymer Valves and Colorimetric Chemistries for Timeâ€5equenced Discrete Sampling and Chloride Analysis of Sweat via Skinâ€Mounted Soft Microfluidics. Small, 2018, 14, e1703334.	5.2	119
23	Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain, 2017, 158, 2108-2116.	2.0	93
24	Wireless, battery-free, flexible, miniaturized dosimeters monitor exposure to solar radiation and to light for phototherapy. Science Translational Medicine, 2018, 10, .	5.8	91
25	Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Science Advances, 2020, 6, eabb1093.	4.7	87
26	Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. Nature Communications, 2021, 12, 5008.	5.8	83
27	Soft Elastomers with Ionic Liquidâ€Filled Cavities as Strain Isolating Substrates for Wearable Electronics. Small, 2017, 13, 1602954.	5.2	82
28	Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics. Advanced Materials, 2017, 29, 1702665.	11.1	71
29	Patterned oxide semiconductor by electrohydrodynamic jet printing for transparent thin film transistors. Applied Physics Letters, 2012, 100, .	1.5	60
30	Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€₹erm Electrophysiological Recording. Advanced Functional Materials, 2016, 26, 7281-7290.	7.8	53
31	Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries. Scientific Reports, 2015, 5, 8946.	1.6	42
32	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. Advanced Functional Materials, 2015, 25, 1338-1343.	7.8	41
33	Mechanically Guided Postâ€Assembly of 3D Electronic Systems. Advanced Functional Materials, 2018, 28, 1803149.	7.8	41
34	WO ₃ /W:BiVO ₄ /BiVO ₄ graded photoabsorber electrode for enhanced photoelectrocatalytic solar light driven water oxidation. Physical Chemistry Chemical Physics, 2017, 19, 4648-4655.	1.3	38
35	Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. ACS Nano, 2018, 12, 4164-4171.	7.3	36
36	Recent Advances in AIV Biosensors Composed of Nanobio Hybrid Material. Micromachines, 2018, 9, 651.	1.4	31

JEONGHYUN KIM

#	Article	IF	CITATIONS
37	Near-Field Communication in Biomedical Applications. Sensors, 2021, 21, 703.	2.1	23
38	Wireless, Skin-Mountable EMG Sensor for Human–Machine Interface Application. Micromachines, 2019, 10, 879.	1.4	21
39	Miniaturized, light-adaptive, wireless dosimeters autonomously monitor exposure to electromagnetic radiation. Science Advances, 2019, 5, eaay2462.	4.7	21
40	Stretchable Electronics: Epidermal Electronics with Advanced Capabilities in Near-Field Communication (Small 8/2015). Small, 2015, 11, 905-905.	5.2	8
41	Flexible Electronics: An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation (Adv. Mater. 22/2016). Advanced Materials, 2016, 28, 4563-4563.	11.1	7
42	Stretchable and Transparent Paper Based on PDMS–CNC Composite for Direct Printing. Advanced Materials Technologies, 2021, 6, 2100156.	3.0	7
43	Nitrogen-Doped Reduced Graphene Oxide Supported Pd4.7Ru Nanoparticles Electrocatalyst for Oxygen Reduction Reaction. Nanomaterials, 2021, 11, 2727.	1.9	5
44	Oximetry: Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry (Adv. Funct. Mater.) Tj ETQ	∑q0_080 rgl	BT /Overlock 1 4
45	Solution processes for ultrabroadband and omnidirectional graded-index glass lenses with near-zero reflectivity in high concentration photovoltaics. Scientific Reports, 2018, 8, 14907.	1.6	4
46	Epidermal Electronics: Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4919-4919.	7.8	3
47	Assemblyâ€Type Wireless Communication Patch for Miniaturized Flexible Wearable Sensors. Advanced Materials Technologies, 2021, 6, 2100034.	3.0	3
48	Electronic Stuctures: Mechanically Guided Postâ€Assembly of 3D Electronic Systems (Adv. Funct. Mater.) Tj ETQ	90.0.0 rgE 7.8	3T /Overlock 1 2
49	UV Sensors: Materials and Device Designs for an Epidermal UV Colorimetric Dosimeter with Near Field Communication Capabilities (Adv. Funct. Mater. 2/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
50	Wireless, Accumulation Mode Dosimeters for Monitoring Pulsed and Non-Pulsed Germicidal Lamps. IEEE Sensors Journal, 2021, 21, 18706-18714.	2.4	1
51	Electrodes: Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€Term Electrophysiological Recording (Adv. Funct. Mater. 40/2016). Advanced Functional Materials, 2016, 26, 7280-7280.	7.8	0
52	Networks and near-field communication: up-close but far away. , 2021, , 197-210.		0
53	(Invited) Fully-Wireless Health-Monitoring System with Near-Field Communication. ECS Meeting Abstracts, 2018, , .	0.0	0