Amir Hossein Behravesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8659950/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of the energy absorption capacity of foam-filled 3D-printed glass fiber reinforced thermoplastic auxetic honeycomb structures. Mechanics of Advanced Materials and Structures, 2023, 30, 758-769.	1.5	24
2	Additive manufacture of PCL/nHA scaffolds reinforced with biodegradable continuous Fibers: Mechanical Properties, in-vitro degradation Profile, and cell study. European Polymer Journal, 2022, 162, 110876.	2.6	13
3	Comprehensive study on shape shifting behaviors in FDM-based 4D printing of bilayer structures. International Journal of Advanced Manufacturing Technology, 2022, 120, 959-974.	1.5	12
4	Assessment of fiber-reinforcement and foam-filling in the directional energy absorption performance of a 3D printed accordion cellular structure. Composite Structures, 2022, 297, 115945.	3.1	12
5	An innovative design approach in three-dimensional printing of continuous fiber–reinforced thermoplastic composites via fused deposition modeling process: In-melt simultaneous impregnation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234, 243-259.	1.5	50
6	An in vitro study on the key features of Poly L-lactic acid/biphasic calcium phosphate scaffolds fabricated via DLP 3D printing for bone grafting. European Polymer Journal, 2020, 141, 110057.	2.6	22
7	3D printed PCL scaffold reinforced with continuous biodegradable fiber yarn: A study on mechanical and cell viability properties. Polymer Testing, 2020, 83, 106347.	2.3	71
8	Functionalized poly l-lactic acid synthesis and optimization of process parameters for 3D printing of porous scaffolds via digital light processing (DLP) method. Journal of Manufacturing Processes, 2020, 56, 550-561.	2.8	50
9	Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites. Science of the Total Environment, 2019, 664, 363-373.	3.9	24
10	The role of foaming process on shape memory behavior of polylactic acid-thermoplastic polyurethane-nano cellulose bio-nanocomposites. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 266-277.	1.5	19
11	Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products. Experimental Mechanics, 2019, 59, 883-897.	1.1	154
12	Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer. Journal of Reinforced Plastics and Composites, 2019, 38, 99-116.	1.6	120
13	Investigation and analysis of glass fabric/PVC composite laminates processing parameters. Science and Engineering of Composite Materials, 2018, 25, 529-540.	0.6	2
14	A modular extrusion die design to produce continuous glass fibers reinforced PVCâ€wood composite profiles. Polymer Composites, 2018, 39, 2268-2276.	2.3	1
15	Foaming and thermal characteristics of bio-based polylactic acid–thermoplastic polyurethane blends. Journal of Cellular Plastics, 2018, 54, 931-955.	1.2	8
16	An experimental study on foaming of linear low-density polyethylene/high-density polyethylene blends. Journal of Cellular Plastics, 2017, 53, 83-105.	1.2	4
17	Shape memory behaviors in cylindrical shell PLA/TPU-cellulose nanofiber bio-nanocomposites: Analytical and experimental assessment. Composites Part A: Applied Science and Manufacturing, 2017, 101, 160-172.	3.8	30
18	Statistical and experimental investigation on low density microcellular foaming of PLA-TPU/cellulose nano-fiber bio-nanocomposites. Polymer Testing, 2017, 61, 300-313.	2.3	31

#	Article	IF	CITATIONS
19	Compressive shape memory behavior of springâ€shaped polylactic acid alloy type. Journal of Applied Polymer Science, 2017, 134, 45115.	1.3	13
20	Morphological Analysis of Foamed HDPE/LLDPE Blends by X-ray Micro-Tomography: Effect of Blending, Mixing Intensity and Foaming Temperature. Frontiers in Forests and Global Change, 2017, 36, 221-250.	0.6	8
21	Assessment of defect detection in wood–plastic composites via shearography method. Journal of Thermoplastic Composite Materials, 2016, 29, 28-36.	2.6	7
22	Effect of temperature on the fracture mechanism of wood–plastic composites in situ. Journal of Thermoplastic Composite Materials, 2016, 29, 3-15.	2.6	4
23	Experimental investigation on mechanical properties of extruded foamed PVCâ€wood composites reinforced with continuous glass fibers. Polymer Composites, 2016, 37, 1674-1680.	2.3	10
24	Effect of Mixing Intensity on Foaming Behavior of LLDPE/HDPE Blends in Thermal Induced Batch Process. Polymer-Plastics Technology and Engineering, 2016, 55, 949-964.	1.9	12
25	Mixed-mode cohesive zone modeling and damage prediction of irregular-shaped interfaces in wood–plastic composites. Composite Interfaces, 2015, 22, 651-662.	1.3	2
26	Comparison of mechanical properties of wood–plastic composites reinforced with continuous and noncontinuous glass fibers. Journal of Thermoplastic Composite Materials, 2015, 28, 791-805.	2.6	12
27	Bulk Density Reduction of Injection Molded Thermoplastic Foams via a Mold Design Approach. Frontiers in Forests and Global Change, 2014, 33, 21-42.	0.6	4
28	Effect of polymeric matrix melt flow index in reprocessing extruded wood–plastic composites. Journal of Thermoplastic Composite Materials, 2014, 27, 881-894.	2.6	25
29	Visualization of foaming phenomena in thermoplastic injection molding process. Journal of Cellular Plastics, 2014, 50, 279-300.	1.2	11
30	An experimental investigation on surface quality and water absorption of extruded wood–plastic composite. Journal of Thermoplastic Composite Materials, 2013, 26, 680-698.	2.6	14
31	Continuous glass fiber reinforced wood plastic composite in extrusion process: Feasibility and processing. Journal of Reinforced Plastics and Composites, 2013, 32, 52-60.	1.6	16
32	<i>In-situ</i> observation of fracture mechanism of wood–plastic composites in tension. Composite Interfaces, 2013, 20, 211-220.	1.3	7
33	Procedure effect on the physical and mechanical properties of the extruded wood plastic composites. Polymer Composites, 2013, 34, 1349-1356.	2.3	10
34	A Novel Approach in Mold Design in Regards to Weight Reduction of Foam Injection Molded Parts. Frontiers in Forests and Global Change, 2013, 32, 279-304.	0.6	8
35	On the Effect of Unit-Cell Parameters in Predicting the Elastic Response of Wood-Plastic Composites. Journal of Engineering (United States), 2013, 2013, 1-7.	0.5	2
36	Mathematical and experimental study on flow of wood plastic composite to acquire its constitutive equation. Journal of Reinforced Plastics and Composites, 2012, 31, 749-757.	1.6	2

#	Article	IF	CITATIONS
37	Rheological Investigation of Wood-Polypropylene Composites in Rotational Plate Rheometer. Journal of Polymers and the Environment, 2012, 20, 998-1006.	2.4	15
38	Experimental investigation on reprocessing of extruded wood flour/HDPE composites. Polymer Composites, 2012, 33, 753-763.	2.3	44
39	Effect of processing parameters on water penetration in water assisted injection molding of ABS. Polimery, 2011, 56, 232-239.	0.4	7
40	Theoretical and visual study of bubble dynamics in foam injection molding. Polymer Engineering and Science, 2010, 50, 561-569.	1.5	14
41	Flow balancing in die design of wood flour/HDPE composite extrusion profiles with consideration of rheological effect. Polymer Engineering and Science, 2010, 50, 543-549.	1.5	16
42	Formation and characterization of polyethylene blends for autoclaveâ€based expandedâ€bead foams. Polymer Engineering and Science, 2010, 50, 1161-1167.	1.5	19
43	Design, optimization, and manufacturing of a multipleâ€ŧhickness profile extrusion die with a cross flow. Polymer Engineering and Science, 2010, 50, 2417-2424.	1.5	9
44	Experimental and theoretical investigation of the first fold creation in thin walled columns. Acta Mechanica Solida Sinica, 2010, 23, 353-360.	1.0	21
45	Experimental Investigation of Injection Molding of Wood/Plastics Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 456-465.	1.6	7
46	Theoretical and Experimental Study on Die Pressure Prediction in Extrusion of Wood-Plastic Composite. Journal of Composite Materials, 2010, 44, 1293-1304.	1.2	16
47	Experimental Study on Microstructural, Surface Hardness and Flexural Strength of Injection Molded Microcellular Foamed Parts. Frontiers in Forests and Global Change, 2009, 28, 405-428.	0.6	13
48	Challenge to the Production of Fine Wood—Plastic Injection Molded Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 73-82.	1.6	10
49	Design and Manufacture of an Extrusion Die for Wood—Plastic Composite. Journal of Reinforced Plastics and Composites, 2009, 28, 1433-1439.	1.6	14
50	Effect of Die Pressure on Mechanical Properties of Wood—Plastic Composite in Extrusion Process. Journal of Thermoplastic Composite Materials, 2009, 22, 605-616.	2.6	10
51	An innovative method of die design and evaluation of flow balance for thermoplastics extrusion profiles. Polymer Engineering and Science, 2009, 49, 1793-1799.	1.5	17
52	An experimental investigation on water penetration in the process of water assisted injection molding of polypropylene. Polimery, 2009, 54, 564-572.	0.4	12
53	Realâ€ŧime measurement of flow front kinematics using quantitative visualization in injection molding process. Polymer Engineering and Science, 2008, 48, 598-605.	1.5	19
54	Visualization of the flow history contours at the crossâ€section of a weldâ€line in an injected molded part. Journal of Applied Polymer Science, 2008, 109, 412-417.	1.3	4

#	Article	IF	CITATIONS
55	Flow Behavior of HDPE-Fine Wood Particles Composites. Journal of Thermoplastic Composite Materials, 2007, 20, 439-451.	2.6	25
56	An experimental investigation on dimensional stability of injected wax patterns of gas turbine blades. Journal of Materials Processing Technology, 2007, 182, 580-587.	3.1	56
57	Visualization of in-mold shrinkage in injection molding process. Polymer Engineering and Science, 2007, 47, 750-756.	1.5	13
58	Low density microcellular foam processing in extrusion using CO2. Polymer Engineering and Science, 1998, 38, 1812-1823.	1.5	248
59	An Experimental Investigation on Surface Quality Extruded Wood-Polypropylene Composite. Advanced Materials Research, 0, 428, 89-93.	0.3	3