

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8659717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical Polishing of Perovskite Surface Enhances Photovoltaic Performances. Journal of the American Chemical Society, 2022, 144, 1700-1708.	6.6	88
2	Hysteresis-free Ga2O3 solar-blind phototransistor modulated from photoconduction to photogating effect. Applied Physics Letters, 2022, 120, .	1.5	13
3	Charged Exciton Formation in Compact Polycrystalline Perovskite Thin Films. ACS Photonics, 2022, 9, 1614-1620.	3.2	0
4	Minimizing voltage deficit in Methylammonium-Free perovskite solar cells via surface reconstruction. Chemical Engineering Journal, 2022, 444, 136622.	6.6	22
5	Bifunctional Bisâ€benzophenone as A Solid Additive for Nonâ€Fullerene Solar Cells. Advanced Functional Materials, 2021, 31, 2008699.	7.8	13
6	Dichlorinated Dithienyletheneâ€Based Copolymers for Airâ€Stable nâ€Type Conductivity and Thermoelectricity. Advanced Functional Materials, 2021, 31, 2005901.	7.8	50
7	Buried Interfaces in Halide Perovskite Photovoltaics. Advanced Materials, 2021, 33, e2006435.	11.1	214
8	Manipulating the Crystallization Kinetics by Additive Engineering toward Highâ€Efficient Photovoltaic Performance. Advanced Functional Materials, 2021, 31, 2009103.	7.8	20
9	Using Preformed Meisenheimer Complexes as Dopants for nâ€Type Organic Thermoelectrics with High Seebeck Coefficients and Power Factors. Advanced Functional Materials, 2021, 31, 2010567.	7.8	28
10	Visualizing Interfacial Jamming Using an Aggregationâ€Inducedâ€Emission Molecular Reporter. Angewandte Chemie, 2021, 133, 8776-8781.	1.6	4
11	Dielectric screening in perovskite photovoltaics. Nature Communications, 2021, 12, 2479.	5.8	88
12	Interfacial stabilization for inverted perovskite solar cells with long-term stability. Science Bulletin, 2021, 66, 991-1002.	4.3	45
13	Characteristics of Non-Fullerene Acceptor-Based Organic Photovoltaic Active Layers Using X-ray Scattering and Solid-State NMR. Journal of Physical Chemistry C, 2021, 125, 15863-15871.	1.5	2
14	Optimizing Vertical Crystallization for Efficient Perovskite Solar Cells by Buried Composite Layers. Solar Rrl, 2021, 5, 2100457.	3.1	14
15	Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nature Communications, 2021, 12, 309.	5.8	509
16	Surface modification induced by perovskite quantum dots for triple-cation perovskite solar cells. Nano Energy, 2020, 67, 104189.	8.2	81
17	Unraveling the Crystallization Kinetics of 2D Perovskites with Sandwichâ€Type Structure for Highâ€Performance Photovoltaics. Advanced Materials, 2020, 32, e2002784.	11.1	52
18	Improving Efficiency and Stability of Perovskite Solar Cells Enabled by A Near-Infrared-Absorbing Moisture Barrier. Joule, 2020, 4, 1575-1593.	11.7	88

Qin Hu

#	Article	IF	CITATIONS
19	Butterfly Effects Arising from Starting Materials in Fused-Ring Electron Acceptors. Journal of the American Chemical Society, 2020, 142, 20124-20133.	6.6	87
20	Conductive Thin Films over Large Areas by Supramolecular Self-Assembly. ACS Applied Materials & Interfaces, 2020, 12, 54020-54025.	4.0	2
21	Surface and grain boundary carbon heterogeneity in CH3NH3PbI3 perovskites and its impact on optoelectronic properties. Applied Physics Reviews, 2020, 7, .	5.5	9
22	Bimolecular crystal instability and morphology of bulk heterojunction blends in organic and perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 11695-11703.	2.7	1
23	Manipulating Film Morphology of Allâ€Polymer Solar Cells by Incorporating Polymer Compatibilizer. Solar Rrl, 2020, 4, 2000148.	3.1	16
24	Naphthaleneâ€Diimideâ€Based Ionenes as Universal Interlayers for Efficient Organic Solar Cells. Angewandte Chemie, 2020, 132, 18288-18292.	1.6	14
25	Naphthaleneâ€Ðiimideâ€Based Ionenes as Universal Interlayers for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 18131-18135.	7.2	61
26	Comparison of Fused-Ring Electron Acceptors with One- and Multidimensional Conformations. ACS Applied Materials & Interfaces, 2020, 12, 23976-23983.	4.0	10
27	Improving the efficiencies of small molecule solar cells by solvent vapor annealing to enhance J-aggregation. Journal of Materials Chemistry C, 2019, 7, 9618-9624.	2.7	15
28	High Short-Circuit Current Density via Integrating the Perovskite and Ternary Organic Bulk Heterojunction. ACS Energy Letters, 2019, 4, 2535-2536.	8.8	47
29	In Situ Structure Characterization in Slotâ€Dieâ€Printed Allâ€Polymer Solar Cells with Efficiency Over 9%. Solar Rrl, 2019, 3, 1900032.	3.1	20
30	Overcoming the morphological and efficiency limit in all-polymer solar cells by designing conjugated random copolymers containing a naphtho[1,2- <i>c</i> :5,6- <i>c</i> ′]bis([1,2,5]thiadiazole)] moiety. Journal of Materials Chemistry A, 2018, 6, 23295-23300.	5.2	15
31	Ternary non-fullerene polymer solar cells with a high crystallinity n-type organic semiconductor as the second acceptor. Journal of Materials Chemistry A, 2018, 6, 24814-24822.	5.2	16
32	Multiple Roles of a Non-fullerene Acceptor Contribute Synergistically for High-Efficiency Ternary Organic Photovoltaics. Joule, 2018, 2, 2154-2166.	11.7	85
33	Phenylene-bridged perylenediimide-porphyrin acceptors for non-fullerene organic solar cells. Sustainable Energy and Fuels, 2018, 2, 2616-2624.	2.5	30
34	Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 2018, 360, 1442-1446.	6.0	1,221
35	A Highly Efficient Nonâ€Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fineâ€Tuned Holeâ€Transporting Layer. Advanced Materials, 2018, 30, e1801801.	11.1	360
36	Ternary polymer solar cells based-on two polymer donors with similar HOMO levels and an organic acceptor with absorption extending to 850â€⁻nm. Organic Electronics, 2018, 62, 89-94.	1.4	10

Qin Hu

#	Article	IF	CITATIONS
37	Applying the heteroatom effect of chalcogen for high-performance small-molecule solar cells. Journal of Materials Chemistry A, 2017, 5, 3425-3433.	5.2	14
38	1,3-Bis(thieno[3,4- <i>b</i>]thiophen-6-yl)-4 <i>H</i> -thieno[3,4- <i>c</i>]pyrrole-4,6(5 <i>H</i>)-dione-Based Small-Molecule Donor for Efficient Solution-Processed Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6213-6219.	4.0	20
39	High Efficiency Ternary Nonfullerene Polymer Solar Cells with Two Polymer Donors and an Organic Semiconductor Acceptor. Advanced Energy Materials, 2017, 7, 1602215.	10.2	92
40	Pinhole-Free Hybrid Perovskite Film with Arbitrarily-Shaped Micro-Patterns for Functional Optoelectronic Devices. Nano Letters, 2017, 17, 3563-3569.	4.5	57
41	Enhancing Performances of Solutionâ€Processed Inverted Ternary Smallâ€Molecule Organic Solar Cells: Manipulating the Hostâ€Guest Donors and Acceptor Interaction. Solar Rrl, 2017, 1, 1600003.	3.1	15
42	Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. Nano Research, 2017, 10, 3765-3774.	5.8	20
43	In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4â^' cage nanoparticles. Nature Communications, 2017, 8, 15688.	5.8	191
44	Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure. Science China Materials, 2017, 60, 608-616.	3.5	12
45	Dualâ€Source Precursor Approach for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2017, 29, 1604758.	11.1	142
46	Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Smallâ€Bandgap Electron Acceptor. Advanced Materials, 2017, 29, 1606574.	11.1	252
47	Charge Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells Based on Interface Engineering. , 2016, , .		0
48	Multi‣ength Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells. Advanced Functional Materials, 2016, 26, 4822-4828.	7.8	57
49	Mesoporous Pbl ₂ Scaffold for Highâ€Performance Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501890.	10.2	124
50	Inverted Perovskite Solar Cells: Progresses and Perspectives. Advanced Energy Materials, 2016, 6, 1600457.	10.2	387
51	Perovskite Solar Cells: High-Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18% (Adv. Funct. Mater. 20/2016). Advanced Functional Materials, 2016, 26, 3551-3551.	7.8	6
52	Highâ€Performance Polymer Solar Cells Based on a Wideâ€Bandgap Polymer Containing Pyrrolo[3,4â€ <i>f</i>]benzotriazoleâ€5,7â€dione with a Power Conversion Efficiency of 8.63%. Advanced Science, 2016, 3, 1600032.	5.6	69
53	Polymer Solar Cells: Highâ€Performance Polymer Solar Cells Based on a Wideâ€Bandgap Polymer Containing Pyrrolo[3,4â€ <i>f</i>]benzotriazoleâ€5,7â€dione with a Power Conversion Efficiency of 8.63% (Adv. Sci. 9/2016). Advanced Science, 2016, 3, .	5.6	0
54	Chargeâ€Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2016, 28, 10718-10724.	11.1	214

Qin Hu

#	Article	IF	CITATIONS
55	New insight of molecular interaction, crystallization and phase separation in higher performance small molecular solar cells via solvent vapor annealing. Nano Energy, 2016, 30, 639-648.	8.2	77
56	Organic Solar Cells: Multi-Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells (Adv. Funct. Mater. 27/2016). Advanced Functional Materials, 2016, 26, 4806-4806.	7.8	3
57	Highâ€Performance Inverted Planar Heterojunction Perovskite Solar Cells Based on Lead Acetate Precursor with Efficiency Exceeding 18%. Advanced Functional Materials, 2016, 26, 3508-3514.	7.8	176
58	An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces. Light: Science and Applications, 2015, 4, e302-e302.	7.7	56
59	Efficient and low-temperature processed perovskite solar cells based on a cross-linkable hybrid interlayer. Journal of Materials Chemistry A, 2015, 3, 18483-18491.	5.2	55
60	Fast-growing procedure for perovskite films in planar heterojunction perovskite solar cells. Chinese Chemical Letters, 2015, 26, 1518-1521.	4.8	16
61	Engineering of Electron-Selective Contact for Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Nano, 2014, 8, 10161-10167.	7.3	233
62	Laserâ€induced recoverable fluorescence quenching of perovskite films at a microscopic grainâ€scale. Energy and Environmental Materials, 0, , .	7.3	2