Jason Kean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8659683/publications.pdf Version: 2024-02-01

LASON KEAN

#	Article	IF	CITATIONS
1	New insights into debris-flow hazards from an extraordinary event in the Colorado Front Range. GSA Today, 2014, 24, 4-10.	1.1	260
2	Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides, 2013, 10, 547-562.	2.7	227
3	Runoff-generated debris flows: Observations and modeling of surge initiation, magnitude, and frequency. Journal of Geophysical Research F: Earth Surface, 2013, 118, 2190-2207.	1.0	180
4	In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions. Journal of Geophysical Research, 2011, 116, .	3.3	167
5	Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology, 2010, 38, 735-738.	2.0	136
6	Landslide movement in southwest Colorado triggered by atmospheric tides. Nature Geoscience, 2009, 2, 863-866.	5.4	135
7	Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 2017, 278, 149-162.	1.1	135
8	Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment. Journal of Geophysical Research, 2012, 117, .	3.3	124
9	Rainfall intensity–duration thresholds for postfire debris-flow emergency-response planning. Natural Hazards, 2011, 59, 209-236.	1.6	112
10	Characterizing the primary material sources and dominant erosional processes for post-fire debris-flow initiation in a headwater basin using multi-temporal terrestrial laser scanning data. Geomorphology, 2014, 214, 324-338.	1.1	81
11	Model simulations of flood and debris flow timing in steep catchments after wildfire. Water Resources Research, 2016, 52, 6041-6061.	1.7	76
12	Estimating rates of debris flow entrainment from ground vibrations. Geophysical Research Letters, 2015, 42, 6365-6372.	1.5	75
13	Debris flow initiation by runoff in a recently burned basin: Is grainâ€byâ€grain sediment bulking or en masse failure to blame?. Geophysical Research Letters, 2017, 44, 7310-7319.	1.5	72
14	Field measurement of basal forces generated by erosive debris flows. Journal of Geophysical Research F: Earth Surface, 2013, 118, 589-602.	1.0	71
15	Landslides after wildfire: initiation, magnitude, and mobility. Landslides, 2020, 17, 2631-2641.	2.7	71
16	Flow and boundary shear stress in channels with woody bank vegetation. Water Science and Application, 2004, , 237-252.	0.3	65
17	Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado. , 2016, 12, 607-631.		62
18	Elucidating the role of vegetation in the initiation of rainfallâ€induced shallow landslides: Insights from an extreme rainfall event in the Colorado Front Range. Geophysical Research Letters, 2016, 43, 9084-9092.	1.5	62

Jason Kean

#	Article	IF	CITATIONS
19	Evolution of Debrisâ€Flow Initiation Mechanisms and Sediment Sources During a Sequence of Postwildfire Rainstorms. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1572-1595.	1.0	58
20	Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences. Journal of Geophysical Research, 2006, 111, .	3.3	55
21	Test of a Method to Calculate Near-Bank Velocity and Boundary Shear Stress. Journal of Hydraulic Engineering, 2009, 135, 588-601.	0.7	54
22	A lowâ€cost method to measure the timing of postfire flash floods and debris flows relative to rainfall. Water Resources Research, 2012, 48, .	1.7	47
23	Modeling effects of bank friction and woody bank vegetation on channel flow and boundary shear stress in the Rio Puerco, New Mexico. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	45
24	The influence of vegetation on debris-flow initiation during extreme rainfall in the northern Colorado Front Range. Geology, 2016, 44, 823-826.	2.0	41
25	Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences. Journal of Geophysical Research, 2006, 111, .	3.3	38
26	Incorporating spatially heterogeneous infiltration capacity into hydrologic models with applications for simulating postâ€wildfire debris flow initiation. Hydrological Processes, 2018, 32, 1173-1187.	1.1	38
27	Estimating post-fire debris-flow hazards prior to wildfire using a statistical analysis of historical distributions of fire severity from remote sensing data. International Journal of Wildland Fire, 2018, 27, 595.	1.0	37
28	Modeling the evolution of channel shape: Balancing computational efficiency with hydraulic fidelity. Journal of Geophysical Research, 2008, 113, .	3.3	35
29	Thresholds for postâ€wildfire debris flows: Insights from the Pinal Fire, Arizona, USA. Earth Surface Processes and Landforms, 2020, 45, 1349-1360.	1.2	34
30	The recurrence interval of post-fire debris-flow generating rainfall in the southwestern United States. Geomorphology, 2020, 370, 107392.	1.1	34
31	Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory. Journal of Geophysical Research, 2011, 116, .	3.3	33
32	Constraining the relative importance of raindrop―and flowâ€driven sediment transport mechanisms in postwildfire environments and implications for recovery time scales. Journal of Geophysical Research F: Earth Surface, 2016, 121, 2211-2237.	1.0	33
33	Developing and Testing Physically Based Triggering Thresholds for Runoffâ€Generated Debris Flows. Geophysical Research Letters, 2019, 46, 8830-8839.	1.5	32
34	Forecasting the Frequency and Magnitude of Postfire Debris Flows Across Southern California. Earth's Future, 2021, 9, e2020EF001735.	2.4	32
35	Generation and verification of theoretical rating curves in the Whitewater River basin, Kansas. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	30
36	Progress in simplifying hydrologic model parameterization for broad applications to postâ€wildfire flooding and debrisâ€flow hazards. Earth Surface Processes and Landforms, 2019, 44, 3078-3092.	1.2	29

Jason Kean

#	Article	IF	CITATIONS
37	Postwildfire Soilâ€Hydraulic Recovery and the Persistence of Debris Flow Hazards. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006091.	1.0	28
38	Amplification of postwildfire peak flow by debris. Geophysical Research Letters, 2016, 43, 8545-8553.	1.5	27
39	Modelling rating curves using remotely sensed LiDAR data. Hydrological Processes, 2012, 26, 1427-1434.	1.1	26
40	Measuring Basal Force Fluctuations of Debris Flows Using Seismic Recordings and Empirical Green's Functions. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005590.	1.0	24
41	The Influence of Frost Weathering on Debris Flow Sediment Supply in an Alpine Basin. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005369.	1.0	24
42	Movement of Sediment Through a Burned Landscape: Sediment Volume Observations and Model Comparisons in the San Gabriel Mountains, California, USA. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF006053.	1.0	23
43	Multiâ€Model Comparison of Computed Debris Flow Runout for the 9 January 2018 Montecito, California Postâ€Wildfire Event. Journal of Geophysical Research F: Earth Surface, 2021, 126, .	1.0	20
44	Value of a Dual-Polarized Gap-Filling Radar in Support of Southern California Post-Fire Debris-Flow Warnings. Journal of Hydrometeorology, 2011, 12, 1581-1595.	0.7	18
45	Calculation of stageâ€discharge relations for gravel bedded channels. Journal of Geophysical Research, 2010, 115, .	3.3	14
46	The Impact of Sediment Supply on the Initiation and Magnitude of Runoffâ€Generated Debris Flows. Geophysical Research Letters, 2020, 47, e2020GL087643.	1.5	12
47	Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA. Water Resources Management, 2010, 24, 3641-3664.	1.9	9
48	Can Low-Resolution Airborne Laser Scanning Data Be Used to Model Stream Rating Curves?. Water (Switzerland), 2015, 7, 1324-1339.	1.2	7
49	Long-Term Soil-Water Tension Measurements in Semiarid Environments: A Method for Automated Tensiometer Refilling. Vadose Zone Journal, 2018, 17, 180070.	1.3	6
50	Time Since Burning and Rainfall Characteristics Impact Post-Fire Debris-Flow Initiation and Magnitude. Environmental and Engineering Geoscience, 2021, 27, 43-56.	0.3	6
51	Modeling streamflow from coupled airborne laser scanning and acoustic Doppler current profiler data. Hydrology Research, 2017, 48, 981-996.	1.1	2
52	Progress and Lessons Learned from Responses to Landslide Disasters. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 85-111.	0.3	2
53	Chalk Creek Valley: Colorado's natural debris-flow laboratory. , 2010, , 95-117.		2