Jean-François Blais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8658919/publications.pdf

Version: 2024-02-01

172207 223531 2,714 111 29 46 citations g-index h-index papers 113 113 113 2875 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters. Environmental Research, 2022, 207, 112196.	3.7	55
2	Effect of grain size on the bacterial oxidation of a refractory gold sulfide concentrate and its dissolution by cyanidation. Minerals Engineering, 2022, 176, 107360.	1.8	6
3	Recovery of indium from acidic leach solutions of spent LCD panels using ion exchange. Hydrometallurgy, 2022, 210, 105845.	1.8	14
4	Cleanup of sewage sludge spiked with Cd, Cu, and Zn: Sludge quality and distribution of metals in the "soil-plant-water―system. Chemosphere, 2021, 267, 129223.	4.2	8
5	Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. Journal of Geochemical Exploration, 2021, 221, 106699.	1.5	80
6	Copper extraction and recovery from alkaline copper quaternary and copper azole treated wood using sulfuric acid leaching and ion exchange or electrodeposition. Journal of Cleaner Production, 2021, 279, 123687.	4.6	8
7	Combining Sequential Gaussian Simulation with Linear Regression to Develop Rehabilitation Strategies Using a Hydrometallurgical Process to Simultaneously Remove Metals, PCP, and PCDD/F from a Contaminated Soil. Soil and Sediment Contamination, 2021, 30, 275-291.	1.1	O
8	Effect of cleanup of spiked sludge on corn growth biosorption and metal leaching. Emerging Contaminants, 2021, 7, 77-87.	2.2	0
9	Feasibility of a Mineral Carbonation Technique Using Iron-Silicate Mining Waste by Direct Flue Gas CO2 Capture and Cation Complexation Using 2,2′-Bipyridine. Minerals (Basel, Switzerland), 2021, 11, 343.	0.8	11
10	Bioleaching of Uranium Tailings as Secondary Sources for Rare Earth Elements Production. Minerals (Basel, Switzerland), 2021, 11, 302.	0.8	19
11	Pre-concentration of fluorite from a rare earth element carbonatite deposit through the combination of magnetic separation and leaching. Minerals Engineering, 2021, 174, 106998.	1.8	7
12	Aqueous mineral carbonation of Fe rich olivine by cation complexation using 2,2 \hat{a} e-bipidine; concept validation and parameters optimization. Applied Geochemistry, 2021, 131, 105029.	1.4	3
13	Stabilization and Management of Sulfate-Reducing Bioreactor Residues After Acid Mine Drainage Treatment. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	2
14	Mass balance study of a multistage process for the purification of a fluorspar by-product from a rare earth element carbonatite deposit. Minerals Engineering, 2021, 171, 107122.	1.8	0
15	Behaviour of flotation tailings from a rare earth element deposit at high salinity. Journal of Environmental Management, 2021, 300, 113773.	3.8	O
16	Impact of freeze-thaw on the behaviour of flotation tailings from a rare earth deposit. Applied Geochemistry, 2021, 135, 105106.	1.4	3
17	Performance of a Semi-passive Sulfate-reducing Bioreactor for Acid Mine Drainage Treatment and Prediction of Environmental Behavior of Post-treatment Residues. Mine Water and the Environment, 2020, 39, 769-784.	0.9	7
18	Hydrometallurgical Process and Economic Evaluation for Recovery of Zinc and Manganese from Spent Alkaline Batteries. Metals, 2020, 10, 1175.	1.0	15

#	Article	IF	CITATIONS
19	Techno-economic assessment of an hydrometallurgical process to simultaneously remove As, Cr, Cu, PCP and PCDD/F from contaminated soil. Journal of Environmental Management, 2020, 263, 110371.	3.8	6
20	Assessment of the leaching potential of flotation tailings from rare earth mineral extraction in cold climates. Science of the Total Environment, 2020, 732, 139225.	3.9	10
21	Optimized indium solubilization from LCD panels using H2SO4 leaching. Waste Management, 2020, 114, 53-61.	3.7	18
22	Geochemical behavior and stabilization of spent sulfate-reducing biofilter mixtures for treatment of acid mine drainage. Science of the Total Environment, 2020, 718, 137394.	3.9	7
23	Removal of Potential Toxic Inorganic and Organic Compounds from Contaminated Soils by Alkaline Leaching with Surfactant. Soil and Sediment Contamination, 2019, 28, 513-527.	1.1	4
24	Impact of particle size in serpentine thermal treatment: Implications for serpentine dissolution in aqueous-phase using CO2 in flue gas conditions. Applied Clay Science, 2019, 182, 105286.	2.6	10
25	Influence of Organic Carbon Sources on Metal Removal from Mine Impacted Water Using Sulfate-Reducing Bacteria Bioreactors in Cold Climates. Mine Water and the Environment, 2019, 38, 104-118.	0.9	25
26	Comparison of different interpolation methods and sequential Gaussian simulation to estimate volumes of soil contaminated by As, Cr, Cu, PCP and dioxins/furans. Environmental Pollution, 2019, 252, 409-419.	3.7	22
27	Prediction of physical separation of metals from soils contaminated with municipal solid waste ashes and metallurgical residues. Waste Management, 2019, 93, 138-152.	3.7	5
28	Removal of toxic elements from wastewater generated in the decontamination of CCA-treated Eucalyptus sp. and Pinus canadense wood. Journal of Material Cycles and Waste Management, 2018, 20, 1299-1309.	1.6	4
29	Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process. Environmental Science and Pollution Research, 2018, 25, 7748-7757.	2.7	8
30	Study of factors involved in the gravimetric separation process to treat soil contaminated by municipal solid waste. Journal of Environmental Management, 2018, 209, 23-36.	3.8	5
31	Performance of Sulfate-reducing Passive Bioreactors for the Removal of Cd and Zn from Mine Drainage in a Cold Climate. Mine Water and the Environment, 2018, 37, 42-55.	0.9	19
32	Degradation of polycyclic aromatic hydrocarbons in different synthetic solutions by Fenton's oxidation. Environmental Technology (United Kingdom), 2017, 38, 116-127.	1.2	22
33	Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. Journal of Cleaner Production, 2017, 148, 233-244.	4.6	113
34	Treatment technologies used for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soil: A review. Journal of Hazardous Materials, 2017, 333, 194-214.	6.5	79
35	Study of the factors influencing the metals solubilisation from a mixture of waste batteries by response surface methodology. Environmental Technology (United Kingdom), 2017, 38, 3167-3179.	1.2	23
36	Polycyclic Aromatic Hydrocarbon Oxidation from Concentrates Issued from an Attrition Process of Polluted Soil Using the Fenton Reagent and Permanganate. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	18

#	Article	IF	CITATIONS
37	Determination of critical operational conditions favoring sulfide production from domestic wastewater treated by a sulfur-utilizing denitrification process. Journal of Environmental Management, 2017, 198, 16-23.	3.8	4
38	Valorization of raw glycerol and crustacean waste into value added products by Yarrowia lipolytica. Bioresource Technology, 2017, 243, 57-68.	4.8	40
39	Optimization of PAHs Oxidation from a Concentrate of Soil Attrition Using Potassium Permanganate. Soil and Sediment Contamination, 2017, 26, 605-622.	1.1	2
40	Pilot-Scale Decontamination of Soil Polluted with As, Cr, Cu, PCP, and PCDDF by Attrition and Alkaline Leaching. Journal of Environmental Engineering, ASCE, 2017, 143, 04017055.	0.7	4
41	Recovery of zinc and manganese from pyrometallurgy sludge by hydrometallurgical processing. Journal of Cleaner Production, 2017, 168, 311-321.	4.6	25
42	Influence of Soil Parameters on the Efficiency of the Attrition Process to Remove Metals, PCP, Dioxins and Furans from Contaminated Soils. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	4
43	Optimizing removal of arsenic, chromium, copper, pentachlorophenol and polychlorodibenzo-dioxins/furans from the 1–4 mm fraction of polluted soil using an attrition process. Environmental Technology (United Kingdom), 2017, 38, 1862-1877.	1.2	3
44	Counter-Current Attrition Process (CCAP) to Remove Metals, Pentachlorophenol (PCP), Dioxins and Furans (PCDDF) from the 1-4-mm Fraction of Contaminated Soil. Soil and Sediment Contamination, 2017, 26, 636-650.	1.1	5
45	Technical & December 2016 Technical & December 2016 Technical & December 30 Technical & December 30 Technical & December 30 De	2.3	48
46	Assessment of sulfide production risk in soil during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification process. Environmental Science and Pollution Research, 2016, 23, 19071-19083.	2.7	3
47	Co-culture for lipid production: Advances and challenges. Biomass and Bioenergy, 2016, 92, 20-30.	2.9	80
48	Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process. Journal of Environmental Management, 2016, 181, 95-107.	3.8	73
49	Magnetic and density characteristics of a heavily polluted soil with municipal solid waste incinerator residues: Significance for remediation strategies. International Journal of Mineral Processing, 2016, 149, 119-126.	2.6	7
50	Aqueous mineral carbonation of serpentinite on a pilot scale: The effect of liquid recirculation on CO2 sequestration and carbonate precipitation. Applied Geochemistry, 2016, 67, 21-29.	1.4	30
51	Remediation of inorganic contaminants and polycyclic aromatic hydrocarbons from soils polluted by municipal solid waste incineration residues. Environmental Technology (United Kingdom), 2016, 37, 1983-1995.	1.2	14
52	Factors influencing the Zn and Mn extraction from pyrometallurgical sludge in the steel manufacturing industry. Journal of Environmental Management, 2015, 158, 48-54.	3.8	15
53	In situ reactive oxygen species production for tertiary wastewater treatment. Environmental Science and Pollution Research, 2015, 22, 7025-7036.	2.7	16
54	How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production?. Biomass and Bioenergy, 2015, 74, 268-279.	2.9	45

#	Article	IF	Citations
55	Pilot-Scale Decontamination of Small-Arms Shooting Range Soil Polluted with Copper, Lead, Antimony, and Zinc by Acid and Saline Leaching. Journal of Environmental Engineering, ASCE, 2015, 141, .	0.7	9
56	Magnetic separation of serpentinite mining residue as a precursor to mineral carbonation. International Journal of Mineral Processing, 2015, 140, 19-25.	2.6	21
57	Understanding the Effect of Attrition Scrubbing on the Efficiency of Gravity Separation of Six Inorganic Contaminants. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	14
58	Treatment of contaminated soil leachate by precipitation, adsorption and ion exchange. Journal of Environmental Chemical Engineering, 2015, 3, 977-985.	3.3	30
59	Decontamination of metals, pentachlorophenol, and polychlorined dibenzo- <i>p</i> -dioxins and dibenzofurans polluted soil in alkaline conditions using an amphoteric biosurfactant. Environmental Technology (United Kingdom), 2014, 35, 177-186.	1.2	16
60	Monoethanolamine extraction of copper-preservative-treated wood and reuse of the extract for wood preservation. Wood Science and Technology, 2014, 48, 393-409.	1.4	9
61	Parameters optimization for direct flue gas CO 2 capture and sequestration by aqueous mineral carbonation using activated serpentinite based mining residue. Applied Geochemistry, 2014, 50, 66-73.	1.4	49
62	Remediation of Contaminated Dredged Sediments Using Physical Separation Techniques. Soil and Sediment Contamination, 2014, 23, 932-953.	1.1	13
63	Nitroglycerin degradation mediated by soil organic carbon under aerobic conditions. Journal of Contaminant Hydrology, 2014, 166, 52-63.	1.6	3
64	Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples. Journal of Environmental Management, 2014, 132, 197-206.	3.8	17
65	Simultaneous removal of Cu and PAHs from dredged sediments using flotation. Journal of Soils and Sediments, 2013, 13, 1502-1514.	1.5	7
66	Treatment of Arsenic-, Chromium-, Copper- and Pentachlorophenol-Polluted Soil Using Flotation. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	19
67	Optimization of arsenic and pentachlorophenol removal from soil using an experimental design methodology. Journal of Soils and Sediments, 2013, 13, 1189-1200.	1.5	10
68	Low frequency ultrasound-assisted leaching of sewage sludge for toxic metal removal, dewatering and fertilizing properties preservation. Ultrasonics Sonochemistry, 2013, 20, 109-117.	3.8	30
69	Chemical Leaching of Antimony and Other Metals from Small Arms Shooting Range Soil. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	28
70	Pilot-scale investigation of the robustness and efficiency of a copper-based treated wood wastes recycling process. Journal of Hazardous Materials, 2013, 261, 277-285.	6.5	15
71	Counter-current acid leaching process for the removal of Cu, Pb, Sb and Zn from shooting range soil. Environmental Technology (United Kingdom), 2013, 34, 2377-2387.	1.2	5
72	Decontamination of metals and polycyclic aromatic hydrocarbons from slag-polluted soil. Environmental Technology (United Kingdom), 2013, 34, 2633-2648.	1.2	23

#	Article	IF	CITATIONS
73	Optimization of Copper Removal from ACQ-, CA-, and MCQ-Treated Wood Using an Experimental Design Methodology. Journal of Environmental Engineering, ASCE, 2013, 139, 576-587.	0.7	16
74	Counter-current acid leaching process for copper azole treated wood waste. Environmental Technology (United Kingdom), 2012, 33, 2111-2118.	1.2	6
75	Toxic Metal Removal from Polluted Soil by Acid Extraction. Water, Air, and Soil Pollution, 2012, 223, 3739-3755.	1.1	24
76	A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Science of the Total Environment, 2012, 423, 111-119.	3.9	75
77	Design and performance of a pilot-scale equipment for CCA-treated wood remediation. Separation and Purification Technology, 2012, 85, 90-95.	3.9	14
78	Removal of bisphenol-A from spiked synthetic effluents using an immersed membrane activated sludge process. Separation and Purification Technology, 2012, 87, 101-109.	3.9	33
79	Study of an Amphoteric Surfactant in a Soil Decontamination Process Using ANS Enhanced Fluorescence: Micellar Behavior and Dosing in Synthetic and Soil Solutions. Water, Air, and Soil Pollution, 2012, 223, 337-349.	1.1	3
80	Electrochemical treatment of bisphenol-A using response surface methodology. Journal of Applied Electrochemistry, 2012, 42, 95-109.	1.5	44
81	Application of a CCA-treated wood waste decontamination process to other copper-based preservative-treated wood after disposal. Journal of Hazardous Materials, 2011, 186, 1880-1887.	6.5	29
82	Improvement of a three-step process for the treatment of aluminium hazardous wastes containing PAHs (benzo $[b,j,k]$ fluoranthene and chrysene) and fluoride. Environmental Technology (United) Tj ETQq0 0 0 rg	gBT 1O verlo	ock 210 Tf 50 3
83	Comparison between Fenton oxidation process and electrochemical oxidation for PAH removal from an amphoteric surfactant solution. Journal of Applied Electrochemistry, 2010, 40, 1493-1510.	1.5	23
84	Laboratory-Scale Flotation Process for Treatment of Soils Contaminated with Both PAH and Lead. Journal of Environmental Engineering, ASCE, 2010, 136, 1063-1074.	0.7	12
85	Experimental assessment of an innovative process for simultaneous PAHs and Pb removal from polluted soils. Science of the Total Environment, 2009, 407, 5402-5410.	3.9	30
86	Treatment of metal-loaded soil leachates by electrocoagulation. Separation and Purification Technology, 2009, 67, 110-116.	3.9	16
87	Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. Journal of Hazardous Materials, 2009, 172, 1372-1382.	6.5	90
88	Amphoteric Surfactants for PAH and Lead Polluted-Soil Treatment Using Flotation. Water, Air, and Soil Pollution, 2009, 197, 381-393.	1.1	36
89	Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation. Hydrometallurgy, 2009, 96, 318-326.	1.8	78
90	Comparative study of dewatering characteristics of metal precipitates generated during treatment synthetic polymetallic and AMD solutions. Hydrometallurgy, 2009, 98, 247-256.	1.8	20

#	Article	IF	CITATIONS
91	Combined column and cell flotation process for the treatment of PAH contaminated hazardous wastes produced by an aluminium production plant. Journal of Hazardous Materials, 2009, 165, 394-407.	6.5	9
92	Optimization of a chemical leaching process for decontamination of CCA-treated wood. Journal of Hazardous Materials, 2009, 169, 136-145.	6.5	48
93	Selective recovery of Cr and Cu in leachate from chromated copper arsenate treated wood using chelating and acidic ion exchange resins. Journal of Hazardous Materials, 2009, 169, 1099-1105.	6.5	62
94	Coupling extraction–flotation with surfactant and electrochemical degradation for the treatment of PAH contaminated hazardous wastes. Journal of Hazardous Materials, 2009, 170, 1218-1226.	6.5	18
95	Chemical Leaching of Metals from Wastewater Sludge: Comparative Study by Use of Three Oxidizing Agents [H ₂ O ₂ , FeCl ₃ , and Fe ₂ (SO ₄) ₃]. Water Environment Research, 2009, 81, 523-531.	1.3	11
96	Organics removal in oily bilgewater by electrocoagulation process. Journal of Hazardous Materials, 2008, 151, 446-455.	6.5	125
97	Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation. Journal of Hazardous Materials, 2008, 155, 153-163.	6.5	70
98	Decontamination of sludge by the METIX-AC process. Part I: Effects on sludge quality and leaching of chemicals. Bioresource Technology, 2008, 99, 1433-1449.	4.8	6
99	Decontamination of sludge by the METIX-AC process. Part II: Effects on maize growth and bioaccumulation of metals. Bioresource Technology, 2008, 99, 1450-1464.	4.8	7
100	Transformation of red mud from aluminium industry into a coagulant for wastewater treatment. Hydrometallurgy, 2008, 92, 16-25.	1.8	59
101	Effectiveness of soil washing, nanofiltration and electrochemical treatment for the recovery of metal ions coming from a contaminated soil. Water Research, 2008, 42, 1943-1952.	5.3	47
102	Décontamination de sols pollués par les hydrocarbures aromatiques polycycliques par biodégradation en présence de substrats organiques supplémentaires. Journal of Environmental Engineering and Science, 2008, 7, 467-479.	0.3	6
103	Review of Electrochemical Technologies for Environmental Applications. Recent Patents on Engineering, 2007, 1, 257-272.	0.3	110
104	Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms. Environmental Pollution, 2007, 145, 41-50.	3.7	30
105	PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments. Chemosphere, 2007, 68, 1143-1152.	4.2	73
106	Décontamination à l'échelle pilote de sols pollués en métaux toxiques par des procédés miniers et lixiviation chimique. Journal of Environmental Engineering and Science, 2007, 6, 53-64.	0.3	17
107	Heavy Metals Removal from Acidic and Saline Soil Leachate Using Either Electrochemical Coagulation or Chemical Precipitation. Journal of Environmental Engineering, ASCE, 2006, 132, 545-554.	0.7	36
108	Removal of lead in APCR leachates from municipal solid waste incinerator using peat moss in a batch counter-current sorption process. Hydrometallurgy, 2005, 80, 232-240.	1.8	7

#	Article	IF	CITATIONS
109	Bioproduction of Ferric Sulfate Used during Heavy Metals Removal from Sewage Sludge. Journal of Environmental Quality, 2005, 34, 816-824.	1.0	11
110	Different options for metal recovery after sludge decontamination at the Montreal Urban Community wastewater treatment plant. Water Science and Technology, 2002, 46, 33-41.	1.2	19
111	A Decontamination Process to Remove Metals and Stabilise Montreal Sewage Sludge. Scientific World Journal, The, 2002, 2, 1121-1126.	0.8	17