
Marcus J Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8658253/publications.pdf Version: 2024-02-01

MADCUS | SMITH

#	Article	IF	CITATIONS
1	Self-Assembly of Emissive Nanocellulose/Quantum Dot Nanostructures for Chiral Fluorescent Materials. ACS Nano, 2019, 13, 9074-9081.	14.6	115
2	Largeâ€Area Lasing and Multicolor Perovskite Quantum Dot Patterns. Advanced Optical Materials, 2018, 6, 1800474.	7.3	95
3	Core/Alloyed-Shell Quantum Dot Robust Solid Films with High Optical Gains. ACS Photonics, 2016, 3, 647-658.	6.6	45
4	Robust, Uniform, and Highly Emissive Quantum Dot–Polymer Films and Patterns Using Thiol–Ene Chemistry. ACS Applied Materials & Interfaces, 2017, 9, 17435-17448.	8.0	32
5	Robust lasing modes in coupled colloidal quantum dot microdisk pairs using a non-Hermitian exceptional point. Nature Communications, 2019, 10, 561.	12.8	32
6	Composite Structures with Emissive Quantum Dots for Light Enhancement. Advanced Optical Materials, 2019, 7, 1801072.	7.3	30
7	Largeâ€Area Multicolor Emissive Patterns of Quantum Dot–Polymer Films via Targeted Recovery of Emission Signature. Advanced Optical Materials, 2016, 4, 608-619.	7.3	27
8	Large cale Robust Quantum Dot Microdisk Lasers with Controlled High Quality Cavity Modes. Advanced Optical Materials, 2017, 5, 1700011.	7.3	21
9	Enhancement of optical gain characteristics of quantum dot films by optimization of organic ligands. Journal of Materials Chemistry C, 2016, 4, 10069-10081.	5.5	19
10	Enhancing Plasmonic–Photonic Hybrid Cavity Modes by Coupling of Individual Plasmonic Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 24255-24262.	3.1	14
11	Large and Emissive Crystals from Carbon Quantum Dots onto Interfacial Organized Templates. Angewandte Chemie - International Edition, 2020, 59, 20167-20173.	13.8	14
12	Control of Whispering Gallery Modes and PT-Symmetry Breaking in Colloidal Quantum Dot Microdisk Lasers with Engineered Notches. Nano Letters, 2019, 19, 6049-6057.	9.1	13
13	Decay-to-Recovery Behavior and on–off Recovery of Photoluminescence Intensity from Core/Shell Quantum Dots. ACS Photonics, 2017, 4, 1691-1704.	6.6	10
14	Programmed Emission Transformations: Negativeâ€ŧoâ€Positive Patterning Using the Decayâ€ŧoâ€Recovery Behavior of Quantum Dots. Advanced Optical Materials, 2017, 5, 1600509.	7.3	8
15	Heterogeneous forward and backward scattering modulation by polymer-infused plasmonic nanohole arrays. Journal of Materials Chemistry C, 2019, 7, 3090-3099.	5.5	8
16	Coupled Whispering Gallery Mode Resonators via Templateâ€Assisted Assembly of Photoluminescent Microspheres. Advanced Functional Materials, 2019, 29, 1902520.	14.9	5
17	Spectral and directional properties of elliptical quantum-dot microlasers. Journal of Photonics for Energy, 2018, 8, 1.	1.3	2
18	Large and Emissive Crystals from Carbon Quantum Dots onto Interfacial Organized Templates. Angewandte Chemie, 2020, 132, 20342-20348.	2.0	0