Klaus Rademann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8657477/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers. Zeitschrift Fur Physikalische Chemie, 2022, 236, 1243-1265.	1.4	4
2	Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties. Journal of Applied Polymer Science, 2020, 137, 48380.	1.3	41
3	The effect of post-deposition annealing conditions on structural and thermoelectric properties of sputtered copper oxide films. RSC Advances, 2020, 10, 29394-29401.	1.7	13
4	A Comparative Study of the Ionic Cocrystals NaX (α- <scp>d</scp> -Glucose) ₂ (X = Cl, Br, I). Crystal Growth and Design, 2019, 19, 4293-4299.	1.4	9
5	Oneâ€Pot Synthesis of Xanthateâ€Functionalized Cellulose for the Detection of Micromolar Copper(II) and Nickel(II) Ions. Clean - Soil, Air, Water, 2019, 47, 1900179.	0.7	11
6	Correction to "A Comparative Study of the Ionic Cocrystals NaX (α- <scp>d</scp> -Glucose) ₂ (X = Cl, Br, I)― Crystal Growth and Design, 2019, 19, 6822-6822.	1.4	0
7	Functionalized Cellulose for Water Purification, Antimicrobial Applications, and Sensors. Advanced Functional Materials, 2018, 28, 1800409.	7.8	192
8	Inâ€situâ€Untersuchungen mechanochemischer Eintopfreaktionen. Angewandte Chemie, 2018, 130, 6034-6038.	1.6	24
9	In Situ Investigations of Mechanochemical Oneâ€₽ot Syntheses. Angewandte Chemie - International Edition, 2018, 57, 5930-5933.	7.2	101
10	Synthesis, characterization and in situ monitoring of the mechanochemical reaction process of two manganese(II)-phosphonates with N-containing ligands. Journal of Materials Science, 2018, 53, 13390-13399.	1.7	11
11	Mechanochemical synthesis of cerium(IV)-phosphonates. Journal of Materials Science, 2018, 53, 13733-13741.	1.7	6
12	Size Dependence of Electrical Conductivity and Thermoelectric Enhancements in Spinâ€Coated PEDOT:PSS Single and Multiple Layers. Advanced Electronic Materials, 2017, 3, 1600473.	2.6	42
13	Knowing When To Stop—Trapping Metastable Polymorphs in Mechanochemical Reactions. Crystal Growth and Design, 2017, 17, 1190-1196.	1.4	34
14	Bringing Catalysis with Gold Nanoparticles in Green Solvents to Graduate Level Students. Journal of Chemical Education, 2017, 94, 510-514.	1.1	7
15	The effect of the ball to reactant ratio on mechanochemical reaction times studied by in situ PXRD. CrystEngComm, 2017, 19, 3902-3907.	1.3	34
16	Crystal structure and in situ investigation of a mechanochemical synthesized 3D zinc N-(phosphonomethyl)glycinate. Journal of Materials Science, 2017, 52, 12013-12020.	1.7	10
17	Fabrication and Characterization of Surfaces Modified with Carboxymethylthio Ligands for Chelate-Assisted Trapping of Copper. ACS Applied Materials & Interfaces, 2017, 9, 24273-24281.	4.0	10
18	Impact Is Important—Systematic Investigation of the Influence of Milling Balls in Mechanochemical Reactions. Organic Process Research and Development, 2017, 21, 655-659.	1.3	47

#	Article	IF	CITATIONS
19	Versatile H ₂ O ₂ -driven mixed aerogel synthesis from CdTe and bimetallic noble metal nanoparticles. Journal of Materials Chemistry C, 2017, 5, 10251-10259.	2.7	6
20	In Situ Complementary Doping, Thermoelectric Improvements, and Strain-Induced Structure within Alternating PEDOT:PSS/PANI Layers. ACS Applied Materials & amp; Interfaces, 2017, 9, 33308-33316.	4.0	30
21	Unifying Concepts in Room-Temperature CO Oxidation with Gold Catalysts. ACS Catalysis, 2017, 7, 8247-8254.	5.5	33
22	Control of organic polymorph formation: crystallization pathways in acoustically levitated droplets. Zeitschrift Fur Kristallographie - Crystalline Materials, 2017, 232, 15-24.	0.4	8
23	Quantitative NMR spectroscopy for gas analysis for production of primary reference gas mixtures. Journal of Magnetic Resonance, 2017, 275, 1-10.	1.2	7
24	In Situ Investigation of a Self-Accelerated Cocrystal Formation by Grinding Pyrazinamide with Oxalic Acid. Molecules, 2016, 21, 917.	1.7	33
25	Strong-field photoemission in nanotip near-fields: from quiver to sub-cycle electron dynamics. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	31
26	Missing Piece of the Mechanism of the Turkevich Method: The Critical Role of Citrate Protonation. Chemistry of Materials, 2016, 28, 4072-4081.	3.2	57
27	The structure and in situ synthesis investigation of isomorphic mononuclear molecular metal phenylphosphonates. Dalton Transactions, 2016, 45, 9460-9467.	1.6	17
28	The crystallisation of copper(<scp>ii</scp>) phenylphosphonates. Dalton Transactions, 2016, 45, 17453-17463.	1.6	12
29	Crystallization and Growth Mechanisms of Nanostructures in Silicate Glass. , 2016, , 89-114.		4
30	Quantitative determination of activation energies in mechanochemical reactions. Physical Chemistry Chemical Physics, 2016, 18, 23320-23325.	1.3	69
31	Supply and Demand in the Ball Mill: Competitive Cocrystal Reactions. Crystal Growth and Design, 2016, 16, 5843-5851.	1.4	44
32	Mechanochemically Induced Conversion of Crystalline Benzamide Polymorphs by Seeding. Angewandte Chemie, 2016, 128, 14493-14497.	1.6	5
33	Cadmium phenylphosphonates: preparation, characterisation and in situ investigation. RSC Advances, 2016, 6, 36011-36019.	1.7	27
34	Adjusting the thermoelectric properties of copper(<scp>i</scp>) oxide–graphite–polymer pastes and the applications of such flexible composites. Physical Chemistry Chemical Physics, 2016, 18, 10700-10707.	1.3	33
35	Polymorphism of Mechanochemically Synthesized Cocrystals: A Case Study. Crystal Growth and Design, 2016, 16, 1701-1707.	1.4	84
36	Thermoelectricity in the context of renewable energy sources: joining forces instead of competing. Energy and Environmental Science, 2016, 9, 1528-1532.	15.6	46

#	Article	IF	CITATIONS
37	Fast and efficient synthesis of a host guest system: a mechanochemical approach. CrystEngComm, 2016, 18, 1096-1100.	1.3	16
38	Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers. PLoS ONE, 2016, 11, e0151708.	1.1	10
39	Structural Evolution of AuPt and AuPd Nanoparticles Fabricated by Microwave Assisted Synthesis: A Comparative Study. Materials Research Society Symposia Proceedings, 2015, 1802, 13-18.	0.1	3
40	Survival of the Fittest: Competitive Coâ€crystal Reactions in the Ball Mill. Chemistry - A European Journal, 2015, 21, 14969-14974.	1.7	37
41	Controlled Pore Formation on Mesoporous Single Crystalline Silicon Nanowires: Threshold and Mechanisms. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	13
42	Gold Nanoparticles in Novel Green Deep Eutectic Solvents: Self-Limited Growth, Self-Assembly & Catalytic Implications. Zeitschrift Fur Physikalische Chemie, 2015, 229, 221-234.	1.4	18
43	Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis. ACS Nano, 2015, 9, 7052-7071.	7.3	300
44	Illustrating the formation of metal nanoparticles with a growth concept based on colloidal stability. Physical Chemistry Chemical Physics, 2015, 17, 19895-19900.	1.3	37
45	Reliable palladium nanoparticle syntheses in aqueous solution: the importance of understanding precursor chemistry and growth mechanism. CrystEngComm, 2015, 17, 1865-1870.	1.3	49
46	Fragmentation mechanism of the generation of colloidal copper(<scp>i</scp>) iodide nanoparticles by pulsed laser irradiation in liquids. Physical Chemistry Chemical Physics, 2015, 17, 17934-17938.	1.3	18
47	Direct evidence of polyamorphism in paracetamol. CrystEngComm, 2015, 17, 9029-9036.	1.3	37
48	Copper(I) oxide based thermoelectric powders and pastes with high Seebeck coefficients. Applied Physics Letters, 2014, 105, .	1.5	22
49	The Anomalous Fragmentation of Water Clusters at Ultrafast Impacts: An experimental and Theoretical Study. Zeitschrift Fur Physikalische Chemie, 2014, 228, .	1.4	1
50	Self-assembly of gold nanoparticles on deep eutectic solvent (DES) surfaces. Chemical Communications, 2014, 50, 8693-8696.	2.2	38
51	Graphene Oxide/αâ€Bi ₂ O ₃ Composites for Visibleâ€Light Photocatalysis, Chemical Catalysis, and Solar Energy Conversion. ChemSusChem, 2014, 7, 854-865.	3.6	42
52	Solvent-Triggered Crystallization of Polymorphs Studied in Situ. Crystal Growth and Design, 2014, 14, 6445-6450.	1.4	24
53	In Situ Determination of Colloidal Gold Concentrations with UV–Vis Spectroscopy: Limitations and Perspectives. Analytical Chemistry, 2014, 86, 11115-11124.	3.2	156
54	Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 18618-18625.	1.5	316

#	Article	IF	CITATIONS
55	Metallic Copper Colloids by Reductive Laser Ablation of Nonmetallic Copper Precursor Suspensions. Journal of Physical Chemistry A, 2014, 118, 8329-8337.	1.1	19
56	Deep Eutectic Solvents for the Self-Assembly of Gold Nanoparticles: A SAXS, UV–Vis, and TEM Investigation. Langmuir, 2014, 30, 6038-6046.	1.6	77
57	Evaluation of the formation pathways of cocrystal polymorphs in liquid-assisted syntheses. CrystEngComm, 2014, 16, 8272-8278.	1.3	42
58	Size-Controlled Synthesis of Colloidal Silver Nanoparticles Based on Mechanistic Understanding. Chemistry of Materials, 2013, 25, 4679-4689.	3.2	101
59	Crystal growth rates and molecular dynamics of nifedipine. CrystEngComm, 2013, 15, 4062.	1.3	11
60	Cascade catalysis of highly active bimetallic Au/Pd nanoclusters: structure–function relationship investigation using anomalous small-angle X-ray scattering and UV–Vis spectroscopy. Journal of Applied Crystallography, 2013, 46, 1353-1360.	1.9	11
61	Nonuniform friction-area dependency for antimony oxide surfaces sliding on graphite. Physical Review B, 2013, 88, .	1.1	11
62	Quinaldine: Accessing two crystalline polymorphs via the supercooled liquid. Journal of Chemical Physics, 2012, 137, 054505.	1.2	5
63	Fast crystallization of organic glass formers. Chemical Communications, 2012, 48, 1638-1640.	2.2	8
64	Detecting Crystalline Nonequilibrium Phases on the Nanometer Scale. Crystal Growth and Design, 2012, 12, 3239-3242.	1.4	7
65	Near-Ideal Complete Coverage of CD ₃ onto Si(111) Surfaces Using One-Step Electrochemical Grafting: An IR Ellipsometry, Synchrotron XPS, and Photoluminescence Study. Journal of Physical Chemistry C, 2012, 116, 18684-18690.	1.5	11
66	Morphological Diversity of Caffeine on Surfaces: Needles and Hexagons. Crystal Growth and Design, 2012, 12, 583-588.	1.4	18
67	Formation Mechanism of Silver Nanoparticles Stabilized in Glassy Matrices. Journal of the American Chemical Society, 2012, 134, 18824-18833.	6.6	215
68	Size dependent catalysis with CTAB-stabilized gold nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 9343.	1.3	248
69	Pulsed supersonic beams with nucleobases. Analytical and Bioanalytical Chemistry, 2012, 404, 2087-2090.	1.9	1
70	Formation Mechanism of Colloidal Silver Nanoparticles: Analogies and Differences to the Growth of Gold Nanoparticles. ACS Nano, 2012, 6, 5791-5802.	7.3	204
71	Bismuth Hexagons: Facile Mass Synthesis, Stability and Applications. ChemPhysChem, 2012, 13, 2162-2169.	1.0	14
72	Characterization of mechanochemically synthesized MOFs. Microporous and Mesoporous Materials, 2012, 154, 113-118.	2.2	80

#	Article	IF	CITATIONS
73	Precision Velocity Measurements of Pulsed Supersonic Jets. Journal of Physical Chemistry A, 2011, 115, 6997-7004.	1.1	15
74	Quantitative Study of ⁴ He Real Gas Effects Using Supersonic Beams. Zeitschrift Fur Physikalische Chemie, 2011, 225, 517-524.	1.4	3
75	Longâ€Term Stable Silver Subsurface Ionâ€Exchanged Glasses for SERS Applications. ChemPhysChem, 2011, 12, 1683-1688.	1.0	26
76	X-Ray-Assisted Formation of Gold Nanoparticles in Soda Lime Silicate Glass: Suppressed Ostwald Ripening. Physical Review Letters, 2011, 106, 085702.	2.9	26
77	Photoluminescence and surface photovoltage of ethynyl derivative-terminated Si(111) surfaces. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 161-164.	0.8	6
78	Nucleation and Growth of Gold Nanoparticles Studied <i>via in situ</i> Small Angle X-ray Scattering at Millisecond Time Resolution. ACS Nano, 2010, 4, 1076-1082.	7.3	363
79	Toward Novel Pseudo-Polymorphs of Nifedipine: Elucidation of a Slow Crystallization Process. Crystal Growth and Design, 2010, 10, 2693-2698.	1.4	19
80	Mechanochemical Synthesis of Metalâ^'Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas. Chemistry of Materials, 2010, 22, 5216-5221.	3.2	445
81	Supersonic Beams at High Particle Densities: Model Description beyond the Ideal Gas Approximation. Journal of Physical Chemistry A, 2010, 114, 11189-11201.	1.1	16
82	Combined Synchrotron XRD/Raman Measurements: <i>In Situ</i> Identification of Polymorphic Transitions during Crystallization Processes. Langmuir, 2010, 26, 11233-11237.	1.6	35
83	Probing free jet expansions of supercritical fluids. Physica Scripta, 2009, 80, 048127.	1.2	12
84	Plasmonic Enhancement or Energy Transfer? On the Luminescence of Goldâ€, Silverâ€, and Lanthanideâ€Doped Silicate Glasses and Its Potential for Lightâ€Emitting Devices. Advanced Functional Materials, 2009, 19, 2045-2052.	7.8	290
85	Vibrational and Electronic Characterization of Ethynyl Derivatives Grafted onto Hydrogenated Si(111) Surfaces. Langmuir, 2009, 25, 9313-9318.	1.6	24
86	SERS and Multiphotonâ€Induced Luminescence of Gold Micro―and Nanostructures Fabricated by NIR Femtosecondâ€Laser Irradiation. ChemPhysChem, 2008, 9, 2163-2167.	1.0	9
87	Transferring pharmaceuticals into the gas phase. International Journal of Mass Spectrometry, 2008, 277, 305-308.	0.7	7
88	Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology, 2008, 19, 135701.	1.3	122
89	Tracing Coffee Tabletop Traces. Langmuir, 2008, 24, 7970-7978.	1.6	37
90	Cooling and slowing in high-pressure jet expansions. Physical Review A, 2008, 77, .	1.0	18

#	Article	IF	CITATIONS
91	Precise thermodynamic control of high pressure jet expansions. Review of Scientific Instruments, 2007, 78, 073106.	0.6	8
92	Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers. Nanotechnology, 2007, 18, 355702.	1.3	52
93	The Formation of Intermediate Oxygen States on Ru(10â^10) at High Pressures. Journal of Physical Chemistry C, 2007, 111, 4774-4779.	1.5	5
94	Ultrasonic force microscopy on strained antimony nanoparticles. Ultramicroscopy, 2007, 107, 1053-1060.	0.8	12
95	Gold-ruby glass in a new light: On the microstructuring of optical glasses with synchrotron radiation. Gold Bulletin, 2007, 40, 278-282.	3.2	9
96	Frictional Properties of Antimony Nanoparticles: The Influence of Contact Area, Structure, and Surface Contamination. , 2007, , .		0
97	Non-destructive investigation of composition, chemical properties and structure of materials by synchrotron radiation. Insight: Non-Destructive Testing and Condition Monitoring, 2006, 48, 540-544.	0.3	9
98	Apparatus for reactive cluster-surface studies. Review of Scientific Instruments, 2006, 77, 015109.	0.6	7
99	Efficient cooling in supersonic jet expansions of supercritical fluids: CO and CO2. Journal of Chemical Physics, 2006, 125, 174307.	1.2	27
100	On the Chemistry of Gold in Silicate Glasses: Studies on a Nonthermally Activated Growth of Gold Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 7905-7909.	7.2	30
101	Contact-area dependence of frictional forces: Moving adsorbed antimony nanoparticles. Physical Review B, 2005, 71, .	1.1	98
102	Characterization of the (0001) cleavage surface of antimony single crystals using scanning probe microscopy: Atomic structure, vacancies, cleavage steps, and twinned interlayers. Physical Review B, 2004, 69, .	1.1	22
103	Pulsed supersonic expansion of nonvolatile solids. Review of Scientific Instruments, 2004, 75, 5048-5049.	0.6	17
104	Crystallization of Antimony Nanoparticles: Pattern Formation and Fractal Growthâ€. Journal of Physical Chemistry B, 2004, 108, 14292-14297.	1.2	51
105	Crystalline Structures of Sb4 Molecules in Antimony Thin Films ChemInform, 2003, 34, no.	0.1	0
106	Crystalline Structures of Sb4 Molecules in Antimony Thin Films. Angewandte Chemie - International Edition, 2003, 42, 199-202.	7.2	29
107	Subsequent layer growth of supported nanoparticles by deposition of Sb4clusters onto MoS2(0001). New Journal of Physics, 2002, 4, 89-89.	1.2	4
108	Controlled Translational Manipulation of Small Latex Spheres by Dynamic Force Microscopy. Langmuir, 2002, 18, 7798-7803.	1.6	58

#	Article	IF	CITATIONS
109	Unimolecular decomposition of antimony and bismuth cluster ions studied by surface collision induced dissociation mass spectrometry. Physical Chemistry Chemical Physics, 2002, 4, 1192-1200.	1.3	18
110	Mass-selected infrared photodissociation spectroscopy of V4O10+. Physical Chemistry Chemical Physics, 2002, 4, 1101-1104.	1.3	145
111	Stability and reactivity patterns of medium-sized vanadium oxide cluster cations VxOy+ (4  x â€ Chemistry Chemical Physics, 2002, 4, 2621-2628.	≣‰134). Pł 1.3	nysical 36
112	Instabilities and pattern formation during the self-organized growth of nanoparticles on graphite. Surface Science, 2002, 496, L18-L22.	0.8	38
113	STM investigation of surface alloy formation and thin film growth by Sb 4 deposition on Au(111). Surface Science, 2002, 511, 153-162.	0.8	23
114	Molybdenum doped bismuth oxide clusters and their reactivity towards ethene: comparison with pure bismuth oxide clusters. Chemical Physics Letters, 2002, 359, 360-366.	1.2	8
115	Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope. Review of Scientific Instruments, 2001, 72, 136-141.	0.6	93
116	Dislocation of antimony clusters on graphite by means of dynamic plowing nanolithography. Surface Science, 2001, 476, 54-62.	0.8	17
117	Antimony and bismuth oxide cluster ions. Physical Chemistry Chemical Physics, 2001, 3, 3034-3041.	1.3	20
118	Submicrosecond range surface heating and temperature measurement for efficient sensor reactivation. Thin Solid Films, 2001, 391, 143-148.	0.8	12
119	Rhenium oxide cluster anions in a molecular beam. International Journal of Mass Spectrometry, 2001, 209, 1-4.	0.7	7
120	Photoelectron spectroscopy of ReO2a ^{^,} and ReO3a ^{^,} . Chemical Physics Letters, 2001, 343, 99-104.	1.2	15
121	Size dependent evolution of the electronic structure of small rhenium clusters investigated by photoelectron spectroscopy: approaching the bulk. Chemical Physics Letters, 2001, 347, 46-50.	1.2	7
122	A new scintillation-type time-of-flight anion detector. Review of Scientific Instruments, 2001, 72, 3475-3476.	0.6	0
123	Interaction of Bismuth Oxide Cluster Cations with Alkenes and Molecular Oxygen:  Bi4O6+, a Possible Reactive Center for Alkene Oxidation. Journal of Physical Chemistry A, 2000, 104, 6979-6982.	1.1	34
124	ZINC AND CADMIUM DOPED RARE GAS CLUSTER CATIONS. , 2000, , .		0
125	Formation, stability, and structures of antimony oxide cluster ions. Journal of Chemical Physics, 1999, 110, 1437-1449.	1.2	20
126	Bimodal Distribution in the Fragmentation Behavior of Small Antimony ClustersSbx+(x=3–12) Scattered from a Highly Oriented Pyrolitic Graphite Surface. Physical Review Letters, 1999, 83, 2918-2921.	2.9	38

#	Article	IF	CITATIONS
127	Mass-spectrometric study of formation and stability of manganese and manganese oxide cluster anions. International Journal of Mass Spectrometry, 1999, 185-187, 673-683.	0.7	16
128	Tertiarybutylhydrazine: a new precursor for the MOVPE of Group III-nitrides. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 20-23.	1.7	19
129	Interaction of mass selected antimony clusters with HOPG. Nuclear Instruments & Methods in Physics Research B, 1999, 157, 155-161.	0.6	10
130	New application for the calibration of scanning probe microscopy piezos. , 1999, 27, 291-295.		7
131	The Use of a Fibre-Based Light Sensor for the Calibration of Scanning Probe Microscopy Piezos. Physica Status Solidi A, 1999, 173, 225-234.	1.7	Ο
132	Depletion of bismuth oxide clusters by reaction with propylene. Chemical Physics Letters, 1998, 284, 363-368.	1.2	9
133	Deposition of size-selected clusters at hyperthermal energies investigated by STM. Applied Physics A: Materials Science and Processing, 1998, 66, S711-S714.	1.1	16
134	Reactions of Selected Bismuth Oxide Cluster Cations with Propene. Angewandte Chemie - International Edition, 1998, 37, 2509-2511.	7.2	19
135	Scattering and deposition of mass-selected antimony clusters. Nuclear Instruments & Methods in Physics Research B, 1997, 125, 223-227.	0.6	21
136	Formation and stability of antimony and bismuth oxide clusters: a mass spectrometric investigation. International Journal of Mass Spectrometry and Ion Processes, 1997, 167-168, 161-172.	1.9	19
137	Formation of potassium oxide clusters by seeded supersonic expansion. International Journal of Mass Spectrometry and Ion Processes, 1995, 148, L5-L9.	1.9	16
138	Size-dependent Trends in the Scattering of Small Potassium Clusters by Water Molecules. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1994, 49, 1067-1073.	0.7	1
139	Probing the Nonmetal—Metal-Transition of Divalent Elements: Direct Experimental Observation of Discrete Electronic Shells in Cadmium Clusters. Zeitschrift Fur Physikalische Chemie, 1994, 184, 265-274.	1.4	7
140	New alternative arsenic precursors for the metal-organic vapour-phase epitaxy of III–V semiconductors: in-situ formation of Asî—,H functionality by β elimination of specific metal-organic arsenic compounds. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 17, 21-24.	1.7	6
141	Electronic structures and properties of microclusters: cadmium and mercury. Journal of Non-Crystalline Solids, 1993, 156-158, 794-802.	1.5	11
142	Evolution of surface plasmon resonance absorption in large gas phase clusters of mercury: Approaching the bulk. Physical Review Letters, 1992, 69, 3208-3211.	2.9	56
143	Photoelectron spectroscopy of neutral mercury clustersHgx(xâ‰⊉09) in a molecular beam. Physical Review Letters, 1992, 69, 3204-3207.	2.9	49
144	Direct Absorption Studies of Jetâ€Cooled Metal Dimers: Magnesium and Cesium. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 1273-1275.	0.9	6

#	Article	IF	CITATIONS
145	Clusters of Divalent Elements: Electronic Properties of Cd _x â€Aggregates. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1992, 96, 1204-1211.	0.9	12
146	In-situ formation of As-H functions by β-elimination of specific metalorganic arsenic compounds for the MOVPE of III/V semiconductors. Journal of Crystal Growth, 1992, 124, 136-141.	0.7	16
147	Abundance distributions and ionization potentials of neutral cadmium clusters Cdx (x≲50). Chemical Physics Letters, 1992, 197, 280-285.	1.2	34
148	Generation of Intense Selenium and Tellurium Cluster Beams. Zeitschrift Fur Physikalische Chemie, 1991, 173, 21-35.	1.4	5
149	Metal-Nonmetal Transition and Homogeneous Nucleation of Mercury Vapour. Annalen Der Physik, 1991, 503, 207-214.	0.9	13
150	Photoelectron spectroscopy and UV/Vis-photoabsorption spectroscopy of isolated clusters. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 19, 161-164.	1.0	16
151	Partial photoionization cross sections of large mercury clusters and liquid mercury in the vacuum ultraviolet photon energy region. Zeitschrift FÃ1⁄4r Physik D-Atoms Molecules and Clusters, 1991, 19, 227-228.	1.0	2
152	Ultraviolet photoelectron studies of the molecules Se5, Se6, Se7 and Se8 with relevance to their geometrical structure. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 19, 229-231.	1.0	19
153	Electronic structure of selenium- and tellurium-clusters. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 19, 233-235.	1.0	32
154	Electronic and Geometrical Structure of Se5, Se6, Se7, and Se8. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1991, 46, 453-461.	0.7	17
155	A new coincidence technique for vacuum ultraviolet photoelectron spectroscopy of neutral clusters in a molecular beam. Review of Scientific Instruments, 1991, 62, 1932-1941.	0.6	15
156	Partial photoionization cross sections of large mercury clusters and liquid mercury in the vacuum ultraviolet photon energy region. , 1991, , 227-228.		0
157	Cluster Research with Spectroscopic Molecular Beam Techniques. , 1991, , 297-315.		0
158	Photoelectron spectroscopy and UV/Vis-photoabsorption spectroscopy of isolated clusters. , 1991, , 161-164.		0
159	Reactivity and Electronic Structures of Isolated Clusters. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1990, 94, 1295-1304.	0.9	6
160	Direct absorption spectra of jetâ€cooled Hg2. Journal of Chemical Physics, 1989, 90, 4630-4631.	1.2	33
161	Vacuum-UV photoemission-photoion coincidence spectroscopy of neutral metal atom clusters. Zeitschrift Fżr Physik D-Atoms Molecules and Clusters, 1989, 12, 431-434.	1.0	9
162	Photoionization Mass Spectrometry and Valence Photoelectronâ€Photoion Coincidence Spectroscopy of Isolated Clusters in a Molecular Beam. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1989, 93, 653-670.	0.9	94

Klaus Rademann

#	Article	IF	CITATIONS
163	Photoelectron-Photoion-Coincidence Spectra of the Monomer and Dimer of Potassium in a Seeded Molecular Beam. Zeitschrift Fur Physikalische Chemie, 1989, 161, 145-151.	1.4	3
164	Vacuum-UV photoemission-photoion coincidence spectroscopy of neutral metal atom clusters. , 1989, , 431-434.		0
165	Evenet al.respond. Physical Review Letters, 1987, 58, 285-285.	2.9	30
166	Size dependence of the gradual transition to metallic properties in isolated mercury clusters. Physical Review Letters, 1987, 59, 2319-2321.	2.9	245
167	Photoisomerization dynamics of alkyl-substituted stilbenes in supersonic jets. Chemical Physics Letters, 1986, 125, 5-11.	1.2	14
168	Electronic Energy Transfer on Fractals. Physical Review Letters, 1984, 52, 2164-2167.	2.9	195
169	Direct electronic energy transfer on fractals. Journal of Luminescence, 1984, 31-32, 634-638.	1.5	11
170	A Chemical Reaction and Charge Transfer in Heteroclusters of Fluorobenzene. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1984, 88, 215-217.	0.9	23
171	Isotopically selective two-photon ionization of toluene and fluorobenzene in a supersonic beam. Chemical Physics Letters, 1983, 101, 485-489.	1.2	12
172	Electronic spectroscopy of fluorobenzene Van der Waals molecules by resonant two-photon ionization. Chemical Physics, 1983, 80, 129-145.	0.9	75