Clement Merckling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8657403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epitaxy of 2D chalcogenides: Aspects and consequences of weak van der Waals coupling. Applied Materials Today, 2021, 22, 100975.	2.3	25
2	Encapsulation study of MOVPE grown InAs QDs by InP towards 1550Ânm emission. Journal of Crystal Growth, 2021, 557, 126010.	0.7	5
3	Role of Stronger Interlayer van der Waals Coupling in Twinâ€Free Molecular Beam Epitaxy of 2D Chalcogenides. Advanced Materials Interfaces, 2021, 8, 2100438.	1.9	3
4	InAlGaAs encapsulation of MOVPE-grown InAs quantum dots on InP(0 0 1) substrate. Journal of Crystal Growth, 2020, 531, 125342.	0.7	3
5	Polarization control of epitaxial barium titanate (BaTiO3) grown by pulsed-laser deposition on a MBE-SrTiO3/Si(001) pseudo-substrate. Journal of Applied Physics, 2020, 128, .	1.1	7
6	Epitaxial registry and crystallinity of MoS2 via molecular beam and metalorganic vapor phase van der Waals epitaxy. Applied Physics Letters, 2020, 117, .	1.5	11
7	Electrical Activity of Extended Defects in Relaxed In _x Ga _{1â^'x} As Hetero-Epitaxial Layers. ECS Journal of Solid State Science and Technology, 2020, 9, 033001.	0.9	2
8	On the van der Waals Epitaxy of Homo-/Heterostructures of Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2020, 12, 27508-27517.	4.0	22
9	Fundamental limitation of van der Waals homoepitaxy by stacking fault formation in WSe ₂ . 2D Materials, 2020, 7, 025027.	2.0	11
10	Peculiar alignment and strain of 2D WSe ₂ grown by van der Waals epitaxy on reconstructed sapphire surfaces. Nanotechnology, 2019, 30, 465601.	1.3	17
11	The impact of extended defects on the generation and recombination lifetime in n type In _{.53} Ga _{.47} As. Journal Physics D: Applied Physics, 2019, 52, 485102.	1.3	3
12	Trap-assisted tunnelling and Shockley-Read-Hall lifetime of extended defects in In.53Ga.47As p+n junction. Journal of Physics: Conference Series, 2019, 1190, 012014.	0.3	1
13	Effective Contact Resistivity Reduction for Mo/Pd/n-In0.53Ga0.47 as Contact. IEEE Electron Device Letters, 2019, 40, 1800-1803.	2.2	2
14	Epitaxial growth and strain relaxation studies of BaTiO3 and BaTiO3/SrTiO3 superlattices grown by MBE on SrTiO3-buffered Si(001) substrate. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	14
15	Observation of the Stacking Faults in In _{0.53} Ga _{0.47} As by Electron Channeling Contrast Imaging. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900293.	0.8	4
16	Thermodynamic modelling of InAs/InP(0†0†1) growth towards quantum dots formation by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 2019, 509, 133-140.	0.7	10
17	Highly Stable Plasmon Induced Hot Hole Transfer into Silicon via a SrTiO ₃ Passivation Interface. Advanced Functional Materials, 2018, 28, 1705829.	7.8	24
18	MoS2 synthesis by gas source MBE for transition metal dichalcogenides integration on large scale substrates. Journal of Applied Physics, 2018, 123, .	1.1	26

#	Article	IF	CITATIONS
19	The effect of Ga pre-deposition on Si (111) surface for InAs nanowire selective area hetero-epitaxy. Journal of Applied Physics, 2018, 123, .	1.1	2
20	Careful stoichiometry monitoring and doping control during the tunneling interface growth of an n + InAs(Si)/p + GaSb(Si) Esaki diode. Journal of Crystal Growth, 2018, 484, 86-91.	0.7	4
21	Dislocations behavior in highly mismatched III-Sb growth and their impact on the fabrication of <i>top-down</i> n + InAs/p + GaSb nanowire tunneling devices. Journal of Applied Physics, 201	8, ¹¹ 24, .	0
22	Bandlike and localized states of extended defects in n-type In0.53Ga0.47As. Journal of Applied Physics, 2018, 124, .	1.1	10
23	Monolithic Integration of InGaAs on Si(001) Substrate for Logic Devices. , 2018, , 71-114.		6
24	New materials for modulators and switches in silicon photonics (Conference Presentation). , 2017, , .		0
25	Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon. Nano Letters, 2017, 17, 559-564.	4.5	59
26	Novel Light Source Integration Approaches for Silicon Photonics. Laser and Photonics Reviews, 2017, 11, 1700063.	4.4	143
27	Controlled orientation of molecular-beam-epitaxial BaTiO ₃ on Si(001) using thickness engineering of BaTiO ₃ and SrTiO ₃ buffer layers. Applied Physics Express, 2017, 10, 065501.	1.1	13
28	Orientation-dependent electro-optical response of BaTiO_3 on SrTiO_3-buffered Si(001) studied via spectroscopic ellipsometry. Optical Materials Express, 2017, 7, 2030.	1.6	19
29	Epitaxial Defects in Nanoscale InP Fin Structures Revealed by Wet-Chemical Etching. Crystals, 2017, 7, 98.	1.0	5
30	Correlation between surface reconstruction and polytypism in InAs nanowire selective area epitaxy. Physical Review Materials, 2017, 1, .	0.9	10
31	Monolithic/Heterogeneous Integration of IIIV lasers on Silicon. , 2016, , .		0
32	Vertical devices for future nano-electronic applications. , 2016, , .		1
33	Diffraction studies for stoichiometry effects in BaTiO3 grown by molecular beam epitaxy on Ge(001). Journal of Applied Physics, 2016, 120, .	1.1	4
34	Heterostructure at CMOS source/drain: Contributor or alleviator to the high access resistance problem?. , 2016, , .		8
35	Influence of Doping and Tunneling Interface Stoichiometry on n+In0.5Ga0.5As/p+GaAs0.5Sb0.5 Esaki Diode Behavior. ECS Transactions, 2016, 72, 73-80.	0.3	4
36	Density and Capture Cross-Section of Interface Traps in GeSnO ₂ and GeO ₂ Grown on Heteroepitaxial GeSn. ACS Applied Materials & Interfaces, 2016, 8, 13181-13186.	4.0	23

#	Article	IF	CITATIONS
37	(Invited) III-V Selective Area Growth and Epitaxial Functional Oxides on Si: From Electronic to Photonic Devices. ECS Transactions, 2016, 72, 59-69.	0.3	0
38	Heterogeneous Integration of InP Devices on Silicon. , 2016, , .		2
39	(Invited) Vertical Nanowire FET Integration and Device Aspects. ECS Transactions, 2016, 72, 31-42.	0.3	39
40	Replacement fin processing for III–V on Si: From FinFets to nanowires. Solid-State Electronics, 2016, 115, 81-91.	0.8	22
41	Review—Device Assessment of Electrically Active Defects in High-Mobility Materials. ECS Journal of Solid State Science and Technology, 2016, 5, P3149-P3165.	0.9	18
42	Room Temperature InGaAs/InP Distributed Feedback Laser Directly Grown on Silicon. , 2016, , .		2
43	(Invited) On the Electrical Activity of Extended Defects in High-Mobility Channel Materials. ECS Transactions, 2015, 69, 119-130.	0.3	5
44	Surface characterization of InP trenches embedded in oxide using scanning probe microscopy. Journal of Applied Physics, 2015, 118, 225304.	1.1	3
45	Staggered band gap n+In0.5Ga0.5As/p+GaAs0.5Sb0.5 Esaki diode investigations for TFET device predictions. Journal of Crystal Growth, 2015, 424, 62-67.	0.7	9
46	Quantitative Method to Determine Planar Defect Frequency in InAs Nanowires by High Resolution X-ray Diffraction. Crystal Growth and Design, 2015, 15, 3868-3874.	1.4	4
47	(Invited) Monolithic Integration of III-V Semiconductors by Selective Area Growth on Si(001) Substrate: Epitaxy Challenges & Applications. ECS Transactions, 2015, 66, 107-116.	0.3	5
48	Nucleation Behavior of III/V Crystal Selectively Grown Inside Nano-Scale Trenches: The Influence of Trench Width. ECS Journal of Solid State Science and Technology, 2015, 4, N83-N87.	0.9	3
49	Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 2015, 9, 837-842.	15.6	270
50	Comprehensive study of Cp 2 Mg p-type doping of InP with MOVPE growth technique. Journal of Alloys and Compounds, 2015, 651, 344-349.	2.8	5
51	Ultimate nano-electronics: New materials and device concepts for scaling nano-electronics beyond the Si roadmap. Microelectronic Engineering, 2015, 132, 218-225.	1.1	30
52	InGaAs Gate-All-Around Nanowire Devices on 300mm Si Substrates. IEEE Electron Device Letters, 2014, 35, 1097-1099.	2.2	89
53	Impact of Pre- and Post-Growth Treatment on the Low-Frequency Noise of InGaAs nMOSFETs. ECS Transactions, 2014, 60, 115-120.	0.3	2
54	Influence of Trench Width on III-V Nucleation during InP Selective Area Growth on Patterned Si(001) Substrate. ECS Transactions, 2014, 64, 501-511.	0.3	3

#	Article	IF	CITATIONS
55	Band alignment at interfaces of amorphous Al2O3 with Ge1â^'xSnx- and strained Ge-based channels. Applied Physics Letters, 2014, 104, 202107.	1.5	4
56	Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50 nm width trenches: The role of the nucleation layer and the recess engineering. Journal of Applied Physics, 2014, 115, 023710.	1.1	82
57	Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches. Journal of Applied Physics, 2014, 115, 023517.	1.1	13
58	(Invited) Selective-Area Metal Organic Vapor-Phase Epitaxy of InGaAs/InP Heterostrucures on Si for Advanced CMOS Devices. ECS Transactions, 2014, 61, 107-112.	0.3	6
59	(Invited) Selective-Area Metal Organic Vapor-Phase Epitaxy of III-V on Si: What About Defect Density?. ECS Transactions, 2014, 64, 513-521.	0.3	15
60	An InGaAs/InP quantum well finfet using the replacement fin process integrated in an RMG flow on 300mm Si substrates. , 2014, , .		51
61	Selective metal-organic chemical vapor deposition growth of high quality GaAs on Si(001). Applied Physics Letters, 2014, 105, .	1.5	42
62	Growth rate for the selective epitaxial growth of Ill–V compounds inside submicron shallow-trench-isolation trenches on Si (001) substrates by MOVPE: Modeling and experiments. Journal of Crystal Growth, 2014, 391, 59-63.	0.7	6
63	Band-to-band tunneling in MOS-capacitors for rapid tunnel-FET characterization. , 2014, , .		1
64	InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models. Journal of Applied Physics, 2014, 115, .	1.1	45
65	Identification of Deep Levels Associated with Extended and Point Defects in GeSn Epitaxial Layers Using DLTs. ECS Transactions, 2013, 53, 251-258.	0.3	7
66	Polytypic InP Nanolaser Monolithically Integrated on (001) Silicon. Nano Letters, 2013, 13, 5063-5069.	4.5	59
67	Border Traps in Ge/III–V Channel Devices: Analysis and Reliability Aspects. IEEE Transactions on Device and Materials Reliability, 2013, 13, 444-455.	1.5	70
68	Analysis of border traps in high-к gate dielectrics on high-mobility channels. , 2013, , .		0
69	An ultra-short InP nanowire laser monolithic integrated on (001) silicon substrate. , 2013, , .		1
70	Inversion-channel GaAs(100) metal-oxide-semiconductor field-effect-transistors using molecular beam deposited Al2O3 as a gate dielectric on different reconstructed surfaces. Applied Physics Letters, 2013, 102, .	1.5	25
71	Selective area growth of InP in shallow trench isolation on large scale Si(001) wafer using defect confinement technique. Journal of Applied Physics, 2013, 114, .	1.1	32
72	Heteroepitaxy of III-V Compound Semiconductors on Silicon for Logic Applications: Selective Area Epitaxy in Shallow Trench Isolation Structures vs. Direct Epitaxy Mediated by Strain Relaxed Buffers. ECS Transactions, 2013, 50, 349-355.	0.3	3

#	Article	IF	CITATIONS
73	(Invited) Ge1-xSnx Materials: Challenges and Applications. ECS Transactions, 2013, 50, 853-863.	0.3	0
74	Trimethylaluminum-based Atomic Layer Deposition of MO2 (M=Zr, Hf): Gate Dielectrics on In0.53Ga0.47As(001) Substrates. ECS Transactions, 2013, 50, 11-19.	0.3	1
75	Oxidation and Sulfidation of Germanium Surfaces: A Comparative Atomic Level Study of Different Passivation Schemes. ECS Transactions, 2013, 50, 569-579.	0.3	2
76	Deep-Level Transient Spectroscopy of MOS Capacitors on GeSn Epitaxial Layers. ECS Transactions, 2013, 50, 279-287.	0.3	4
77	Ge _{1-x} Sn _x Materials: Challenges and Applications. ECS Journal of Solid State Science and Technology, 2013, 2, N35-N40.	0.9	29
78	Composition variation of In _{1â^'x} Ga _x As epitaxially grown in narrow trenches on Si. Journal of Physics: Conference Series, 2013, 471, 012010.	0.3	0
79	Integration of InGaAs Channel n-MOS Devices on 200mm Si Wafers Using the Aspect-Ratio-Trapping Technique. ECS Transactions, 2012, 45, 115-128.	0.3	39
80	InGaAs MOS Transistors Fabricated through a Digital-Etch Gate-Recess Process and the Influence of Forming Gas Anneal on Their Electrical Behavior. ECS Journal of Solid State Science and Technology, 2012, 1, P310-P314.	0.9	10
81	Selective Area Growth of InP on On-Axis Si(001) Substrates with Low Antiphase Boundary Formation. Journal of the Electrochemical Society, 2012, 159, H260-H265.	1.3	25
82	CVD Epitaxial Growth of GeSn Opens a New Route for Advanced Sn-Based Logic and Photonics Devices. , 2012, , .		1
83	Oxide Trapping in the InGaAs–\$hbox{Al}_{2} hbox{O}_{3}\$ System and the Role of Sulfur in Reducing the \$ hbox{Al}_{2}hbox{O}_{3}\$ Trap Density. IEEE Electron Device Letters, 2012, 33, 1544-1546.	2.2	23
84	Challenges for introducing Ge and III/V devices into CMOS technologies. , 2012, , .		4
85	In Situ HCl Etching of InP in Shallow-Trench-Isolated Structures. Journal of the Electrochemical Society, 2012, 159, H455-H459.	1.3	3
86	Metal Oxide Semiconductor Device Studies of Molecular-Beam-Deposited Al\$_{2}\$O\$_{3}\$/InP Heterostructures with Various Surface Orientations (001), (110), and (111). Applied Physics Express, 2012, 5, 061202.	1.1	5
87	Improved AC conductance and Gray-Brown methods to characterize fast and slow traps in Ge metal–oxide–semiconductor capacitors. Journal of Applied Physics, 2012, 111, 054102.	1.1	12
88	Towards the Monolithic Integration of III-V Compound Semiconductors on Si: Selective Area Growth in High Aspect Ratio Structures vs. Strain Relaxed Buffer-Mediated Epitaxy. , 2012, , .		3
89	Epitaxy of III–V based channels on Si and transistor integration for 12-10nm node CMOS. , 2012, , .		2
90	Adsorption of O ₂ on Ge(100): Atomic Geometry and Site-Specific Electronic Structure. Journal of Physical Chemistry C, 2012, 116, 9925-9929.	1.5	13

#	Article	IF	CITATIONS
91	AC Transconductance Dispersion (ACGD): A Method to Profile Oxide Traps in MOSFETs Without Body Contact. IEEE Electron Device Letters, 2012, 33, 438-440.	2.2	25
92	Integration of III-V on Si for High-Mobility CMOS. , 2012, , .		8
93	Site Selective Integration of Ill–V Materials on Si for Nanoscale Logic and Photonic Devices. Crystal Growth and Design, 2012, 12, 4696-4702.	1.4	100
94	Molecular Beam Epitaxial Growth of 6.1 Semiconductors Heterostructures for Advanced p-type Quantum Well Devices. ECS Transactions, 2011, 41, 231-241.	0.3	0
95	Reconstruction dependent reactivity of As-decapped In0.53Ga0.47As(001) surfaces and its influence on the electrical quality of the interface with Al2O3 grown by atomic layer deposition. Applied Physics Letters, 2011, 99, .	1.5	11
96	Advancing CMOS beyond the Si roadmap with Ge and III/V devices. , 2011, , .		43
97	Effects of surface passivation during atomic layer deposition of Al2O3 on In0.53Ga0.47As substrates. Microelectronic Engineering, 2011, 88, 431-434.	1.1	16
98	Band offsets at the (100)GaSb/Al2O3 interface from internal electron photoemission study. Microelectronic Engineering, 2011, 88, 1050-1053.	1.1	7
99	H2S molecular beam passivation of Ge(001). Microelectronic Engineering, 2011, 88, 399-402.	1.1	8
100	Silicon and selenium implantation and activation in In0.53Ga0.47As under low thermal budget conditions. Microelectronic Engineering, 2011, 88, 155-158.	1.1	20
101	Al2O3 stacks on In0.53Ga0.47As substrates: In situ investigation of the interface. Microelectronic Engineering, 2011, 88, 435-439.	1.1	4
102	Defect density reduction of the Al2O3/GaAs(001) interface by using H2S molecular beam passivation. Surface Science, 2011, 605, 1778-1783.	0.8	10
103	Molecular beam epitaxial growth of BaTiO3 single crystal on Ge-on-Si(001) substrates. Applied Physics Letters, 2011, 98, .	1.5	34
104	Ammonium sulfide vapor passivation of In0.53Ga0.47As and InP surfaces. Applied Physics Letters, 2011, 99, .	1.5	26
105	Undoped and <i>in-situ</i> B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition. Applied Physics Letters, 2011, 99, .	1.5	168
106	GaSb molecular beam epitaxial growth onp-InP(001) and passivation within situdeposited Al2O3gate oxide. Journal of Applied Physics, 2011, 109, 073719.	1.1	40
107	Molecular beam deposition of Al2O3 on p-Ge(001)/Ge0.95Sn0.05 heterostructure and impact of a Ge-cap interfacial layer. Applied Physics Letters, 2011, 98, .	1.5	33
108	Influence of Al ₂ O ₃ crystallization on band offsets at interfaces with Si and TiN _x . Applied Physics Letters, 2011, 99, 072103.	1.5	50

#	Article	IF	CITATIONS
109	Electron band alignment at the interface of (100)GaSb with molecular-beam deposited Al2O3. Applied Physics Letters, 2011, 98, 072102.	1.5	7
110	Low interfacial trap density and sub-nm equivalent oxide thickness in In0.53Ga0.47As (001) metal-oxide-semiconductor devices using molecular beam deposited HfO2/Al2O3 as gate dielectrics. Applied Physics Letters, 2011, 99, .	1.5	53
111	Improved Performance of In\$_{0.53}\$Ga\$_{0.47}\$As-Based Metal–Oxide–Semiconductor Capacitors with Al:ZrO\$_{2}\$ Gate Dielectric Grown by Atomic Layer Deposition. Applied Physics Express, 2011, 4, 094103.	1.1	5
112	Electrical Quality of III-V/Oxide Interfaces: Good Enough for MOSFET Devices. ECS Transactions, 2011, 34, 1017-1022.	0.3	0
113	(Invited) Active Trap Determination at the Interface of Ge and In0.53Ga0.47 as Substrates with Dielectric Layers. ECS Transactions, 2011, 41, 203-221.	0.3	3
114	(Invited) Selective Area Growth of InP on On-Axis Si(001) Substrates with Low Antiphase Boundary Formation. ECS Transactions, 2011, 41, 249-263.	0.3	1
115	Biaxial and Uniaxial Compressive Stress Implemented in Ge(Sn) pMOSFET Channels by Advanced Reduced Pressure Chemical Vapor Deposition Developments. ECS Transactions, 2011, 41, 239-248.	0.3	10
116	In Situ HCl Etching of InP in Shallow-Trench-Isolated Structures. ECS Transactions, 2011, 41, 345-354.	0.3	1
117	Submonolayer barium passivation study for germanium(100)/molecular beam epitaxial Al2O3. Applied Physics Letters, 2011, 98, .	1.5	10
118	A TEM nanoanalytical investigation of Pd/Ge ohmic contacts for the miniaturization and optimization of n-InGaAs MOSFET devices. Journal of Physics: Conference Series, 2010, 241, 012037.	0.3	1
119	Electrical characterization of InGaAs ultra-shallow junctions. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C1C41-C1C47.	0.6	6
120	Shaping the future of nanoelectronics beyond the Si roadmap with new materials and devices. Proceedings of SPIE, 2010, , .	0.8	2
121	High FET Performance for a Future CMOS \$hbox{GeO}_{2}\$ -Based Technology. IEEE Electron Device Letters, 2010, 31, 402-404.	2.2	50
122	High oxidation state at the epitaxial interface of γ-Al2O3 thin films grown on Si(111) and Si(001). Applied Physics Letters, 2010, 97, .	1.5	4
123	Great reduction of interfacial traps in Al <inf>2</inf> O <inf>3</inf> /GaAs (100) starting with Ga-rich surface and through systematic thermal annealing. , 2010, , .		Ο
124	Effective reduction of interfacial traps in Al2O3/GaAs (001) gate stacks using surface engineering and thermal annealing. Applied Physics Letters, 2010, 97, 112901.	1.5	66
125	Ge and III/V devices for advanced CMOS. , 2009, , .		3
126	X-ray photoelectron diffraction study of thinAl2O3films grown on Si(111) by molecular beam epitaxy. Physical Review B, 2009, 79, .	1.1	4

#	Article	IF	CITATIONS
127	A DLTS study of Pt/Al2O3/InxGa1 - xAs Capacitors. ECS Transactions, 2009, 25, 151-161.	0.3	4
128	Molecular Beam Epitaxy study of a common a-GeO2 interfacial passivation layer for Ge- and GaAs-based MOS heterostructures. Materials Research Society Symposia Proceedings, 2009, 1155, 1.	0.1	2
129	High Mobility Channel Materials and Novel Devices for Scaling of Nanoelectronics beyond the Si Roadmap. Materials Research Society Symposia Proceedings, 2009, 1194, 49.	0.1	Ο
130	Impact of a γ-Al[sub 2]O[sub 3](001) barrier on LaAlO[sub 3] metal-oxide-semiconductor capacitor electrical properties. Journal of Vacuum Science & Technology B, 2009, 27, 384.	1.3	5
131	High-k Dielectrics and Interface Passivation for Ge and III/V Devices on Silicon for Advanced CMOS. ECS Transactions, 2009, 25, 51-65.	0.3	1
132	SiGe SEG Growth for Buried Channels p-MOS Devices. ECS Transactions, 2009, 25, 201-210.	0.3	27
133	Molecular beam epitaxy passivation studies of Ge and Ill–V semiconductors for advanced CMOS. Microelectronic Engineering, 2009, 86, 1592-1595.	1.1	17
134	Germanium for advanced CMOS anno 2009: a SWOT analysis. , 2009, , .		48
135	Electrical Properties of III-V/Oxide Interfaces. ECS Transactions, 2009, 19, 375-386.	0.3	68
136	A TEM Nanoanalytic Investigation of Pd/Ge Ohmic Contacts for the Miniaturization and Optimization of InGaAs nMOSFET Devices Microscopy and Microanalysis, 2009, 15, 1212-1213.	0.2	0
137	Epitaxial growth of high-lº oxides on silicon. Thin Solid Films, 2008, 517, 197-200.	0.8	7
138	Influence of passivating interlayer on Ge/HfO2 and Ge/Al2O3 interface band diagrams. Materials Science in Semiconductor Processing, 2008, 11, 230-235.	1.9	7
139	Alternative channel materials for MOS devices. , 2008, , .		2
140	Capacitance–Voltage Characterization of GaAs–Oxide Interfaces. Journal of the Electrochemical Society, 2008, 155, H945.	1.3	55
141	Interface Properties Improvement of Ge/Al2O3 and Ge/GeO2/Al2O3 Gate Stacks using Molecular Beam Deposition. ECS Transactions, 2008, 16, 411-422.	0.3	12
142	Capacitance-Voltage (CV) Characterization of GaAs-Oxide Interfaces. ECS Transactions, 2008, 16, 507-519.	0.3	8
143	Epitaxial growth of SrO on Si(001): Chemical and thermal stability. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 1505-1511.	0.9	25
144	Ultralow equivalent oxide thickness obtained for thin amorphous LaAlO3 layers grown on Si(001). Applied Physics Letters, 2007, 91, .	1.5	10

#	Article	IF	CITATIONS
145	Growth of crystalline γâ€Al2O3 on Si by molecular beam epitaxy: Influence of the substrate orientation. Journal of Applied Physics, 2007, 102, 024101.	1.1	22
146	Siliconâ^'Moleculesâ^'Metal Junctions by Transfer Printing:  Chemical Synthesis and Electrical Properties. Journal of Physical Chemistry C, 2007, 111, 7947-7956.	1.5	32
147	Epitaxial growth and relaxation of \hat{I}^3 -Al2O3 on silicon. Thin Solid Films, 2007, 515, 6479-6483.	0.8	17
148	Development of robust interfaces based on crystalline γ-Al2O3(001) for subsequent deposition of amorphous high-lº oxides. Microelectronic Engineering, 2007, 84, 2243-2246.	1.1	20
149	Epitaxial growth of LaAlO3 on Si(001) using interface engineering. Microelectronics Reliability, 2007, 47, 540-543.	0.9	33
150	Strain relaxation and critical thickness for epitaxial LaAlO3 thin films grown on SrTiO3(001) substrates by molecular beam epitaxy. Journal of Crystal Growth, 2007, 306, 47-51.	0.7	25
151	Photoemission (XPS and XPD) study of epitaxial LaAlO3 film grown on SrTiO3(001). Materials Science in Semiconductor Processing, 2006, 9, 954-958.	1.9	20
152	Structural properties of epitaxial SrTiO3 thin films grown by molecular beam epitaxy on Si(001). Journal of Applied Physics, 2006, 100, 124109.	1.1	67
153	Pseudomorphic molecular beam epitaxy growth of \hat{I}^3 -Al2O3(001) on Si(001) and evidence for spontaneous lattice reorientation during epitaxy. Applied Physics Letters, 2006, 89, 232907.	1.5	32
154	LaAlO3 films prepared by MBE on LaAlO3(001) and Si(001) substrates. Microelectronic Engineering, 2005, 80, 146-149.	1.1	22