Stephen E Mcgowan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8657375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuropilin-1 directs PDGFRα-entry into lung fibroblasts and signaling from very early endosomes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L179-L192.	1.3	6
2	Platelet-derived Growth Factor-α and Neuropilin-1 Mediate Lung Fibroblast Response to Rigid Collagen Fibers. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 454-465.	1.4	6
3	The lipofibroblast: more than a lipid-storage depot. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L869-L871.	1.3	12
4	Virus-free and oncogene-free induced pluripotent stem cell reprogramming in cord blood and peripheral blood in patients with lung disease. Regenerative Medicine, 2018, 13, 889-915.	0.8	6
5	Neuropilin-1 and platelet-derived growth factor receptors cooperatively regulate intermediate filaments and mesenchymal cell migration during alveolar septation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L102-L115.	1.3	9
6	Understanding the developmental pathways pulmonary fibroblasts may follow during alveolar regeneration. Cell and Tissue Research, 2017, 367, 707-719.	1.5	12
7	Glucocorticoids Retain Bipotent Fibroblast Progenitors during Alveolar Septation in Mice. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 111-120.	1.4	6
8	Efficient method to create integration-free, virus-free, <i>Myc</i> and <i>Lin28</i> -free human induced pluripotent stem cells from adherent cells. Future Science OA, 2017, 3, FSO211.	0.9	9
9	Platelet-derived growth factor receptor-α and Ras-related C3 botulinum toxin substrate-1 regulate mechano-responsiveness of lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L1174-L1187.	1.3	11
10	Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L463-L474.	1.3	34
11	The Formation of Pulmonary Alveoli. , 2014, , 65-84.		8
12	In search of the elusive lipofibroblast in human lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L605-L608.	1.3	31
13	Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L618-L631.	1.3	51
14	Paracrine cellular and extracellular matrix interactions with mesenchymal progenitors during pulmonary alveolar septation. Birth Defects Research Part A: Clinical and Molecular Teratology, 2014, 100, 227-239.	1.6	16
15	Vitamin A deficiency alters airway resistance in children with acute upper respiratory infection. Pediatric Pulmonology, 2013, 48, 481-489.	1.0	9
16	Platelet-derived growth factor-A regulates lung fibroblast S-phase entry through p27kip1 and FoxO3a. Respiratory Research, 2013, 14, 68.	1.4	31
17	Platelet-derived growth factor-A and sonic hedgehog signaling direct lung fibroblast precursors during alveolar septal formation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L229-L239.	1.3	45
18	Fibroblasts Expressing PDGF-Receptor-Alpha Diminish During Alveolar Septal Thinning in Mice. Pediatric Research, 2011, 70, 44-49.	1.1	36

#	Article	IF	CITATIONS
19	PDGF-Rα gene expression predicts proliferation, but PDGF-A suppresses transdifferentiation of neonatal mouse lung myofibroblasts. Respiratory Research, 2009, 10, 119.	1.4	42
20	Plateletâ€Derived Growth Factor Receptorâ€Alphaâ€Expressing Cells Localize to the Alveolar Entry Ring and Have Characteristics of Myofibroblasts During Pulmonary Alveolar Septal Formation. Anatomical Record, 2008, 291, 1649-1661.	0.8	82
21	Arg-Gly-Asp–Containing Domains of Fibrillins-1 and -2 Distinctly Regulate Lung Fibroblast Migration. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 435-445.	1.4	22
22	Retinoids and pulmonary alveolar regeneration: Rationale and therapeutic challenges. Drug Discovery Today Disease Mechanisms, 2006, 3, 77-84.	0.8	0
23	Alveolarization in Retinoic Acid Receptor-β–Deficient Mice. Pediatric Research, 2005, 57, 384-391.	1.1	54
24	Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats. Respiratory Research, 2005, 6, 77.	1.4	19
25	Retinoic acid reverses the airway hyperresponsiveness but not the parenchymal defect that is associated with vitamin A deficiency. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L437-L444.	1.3	33
26	Development of Alveoli. , 2004, , 55-73.		12
27	Elevation of retinyl ester level in the lungs of rats following repeated intraperitoneal injections of retinoic acid or retinoyl glucuronide. Pulmonary Pharmacology and Therapeutics, 2004, 17, 113-119.	1.1	7
28	Alveolar sphingolipids generated in response to TNF-α modifies surfactant biophysical activity. Journal of Applied Physiology, 2003, 94, 253-258.	1.2	49
29	Contributions of Retinoids to the Generation and Repair of the Pulmonary Alveolus. Chest, 2002, 121, 206S-208S.	0.4	42
30	Pulmonary-specific expression of tumor necrosis factor-α alters surfactant lipid metabolism. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L735-L742.	1.3	24
31	Vitamin A deficiency promotes bronchial hyperreactivity in rats by altering muscarinic M ₂ receptor function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L1031-L1039.	1.3	35
32	EXPRESSION OF LIPOPROTEIN RECEPTOR AND APOLIPOPROTEINE GENES BY PERINATAL RAT LIPID-LADEN PULMONARY FIBROBLASTS. Experimental Lung Research, 2001, 27, 47-63.	0.5	5
33	Mice Bearing Deletions of Retinoic Acid Receptors Demonstrate Reduced Lung Elastin and Alveolar Numbers. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 162-167.	1.4	196
34	Inducible Resistance to Oxidant Stress in the Protozoan Leishmania chagasi. Journal of Biological Chemistry, 2000, 275, 33883-33889.	1.6	91
35	Perinatal expression of genes that may participate in lipid metabolism by lipid-laden lung fibroblasts. Journal of Lipid Research, 1998, 39, 2483-2492.	2.0	32
36	Exogenous and Endogenous Transforming Growth Factors- β Influence Elastin Gene Expression in Cultured Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 25-35.	1.4	63

#	Article	IF	CITATIONS
37	THE PULMONARY LIPOFIBROBLAST (LIPID INTERSTITIAL CELL) AND ITS CONTRIBUTIONS TO ALVEOLAR DEVELOPMENT. Annual Review of Physiology, 1997, 59, 43-62.	5.6	189
38	Peroxisome proliferators alter lipid acquisition and elastin gene expression in neonatal rat lung fibroblasts. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1997, 273, L1249-L1257.	1.3	27
39	Mechanisms of serum-enhanced adhesion of human alveolar macrophages to epithelial cells. Lung, 1991, 169, 215-226.	1.4	13
40	Transforming Growth Factor- <i>β</i> Increases Elastin Production by Neonatal Rat Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 1990, 3, 369-376.	1.4	56
41	Mechanisms of Extracellular Matrix Proteoglycan Degradation by Human Neutrophils. American Journal of Respiratory Cell and Molecular Biology, 1990, 2, 271-279.	1.4	38
42	Neutrophils and Emphysema. New England Journal of Medicine, 1989, 321, 968-970.	13.9	17
43	Direct Effects of Neutrophil Oxidants on Elastase-Induced Extracellular Matrix Proteolysis1–4. The American Review of Respiratory Disease, 1987, 135, 1286-1293.	2.9	47
44	The Fate of Neutrophil Elastase Incorporated by Human Alveolar Macrophages ^{1–} ⁴ . The American Review of Respiratory Disease, 1983, 127, 449-455.	2.9	30